國立成功大學九十五學年度碩士班招生考試試題

編號 F 164

系所:工程科學系甲組、戊組、乙組

科目:控制系統

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

- 1. (20%) (a) (10%) Find e^{At} for the matrix $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
 - (b) (5%) Consider the stable transfer function $G(s) = \frac{Y(s)}{U(s)} = \frac{s}{s^2 + 2s + 1}$. If the steady-state response to the sinusoidal input $u(t) = \sin(5t) + 2\cos(10t)$ is $y_{ss}(t) = A\sin(5t + \theta_1) + B\cos(10t + \theta_2)$, please find the values of A, B, θ_1 and θ_2 .
 - (c) (5%) Find the Laplace transform of the periodic signal x(t) as shown in Fig. 1.

2. (20%) Consider the RC-circuit shown in Fig. 2.

- (a) (5%) Please determine the transfer function from V_{in} to V_{out} when the switch S is closed.
- (b) (5%) Please write down the state equation and output equation in the matrix form when the switch S is closed.
- (c) (5%) Is the circuit controllable when the switch S is closed?
- (d) (5%) If the input voltage $V_{in}=5$ is applied when S is set in the open position before t=0. At time t=0 the switch S is closed and the input voltage is now changed into $V_{in}=-5$. Please determine the output voltage $V_{out}(t)$ for $t \ge 0$. What is the $V_{out}(\infty)$? Verify it by the Final Value Theorem.

(背面仍有題目,請繼續作答)

編號: 148 系所:工程科學系甲組、戊紀・乙紀

科目:控制系統

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

3. (10%) A feedback control system is shown in Fig. 3, where $G(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}$ and

K is the gain of proportional controller. Please use the Routh-Hurwitz criterion to determine that for the values of K the system is stable.

- Fig. 3
- 4. (20%) A feedback control system is shown in Fig. 3, where $G(s) = \frac{1}{s^2 + 2s}$ and K is the gain of proportional controller.
 - (a) (4%) Plot the root locus for $0 \le K < \infty$.
 - (b) (4%) Determine the values of K such that the settling time $t_s \le 4$.
 - (c) (4%) Determine the values of K such that the rise time $t_r \le 1$.
 - (d) (4%) Determine the values of K such that the overshoot $M_p \le 0.1$.
 - (e) (4%) Determine the value of K such that the closed-loop system has poles at $-1 \pm j$.
- 5. (15%) A feedback control system is shown in Fig. 4.
 - (a) (5%) Find the transfer function relating the output y(t) to the disturbance w(t) when the reference input r(t) = 0.
 - (b) (5%) Find the steady-state response $y_{ss}(t)$ if w(t) is a unit ramp function.
 - (c) (5%) What type of this system in relation to the reference input r(t)? What are the values of the step-error and ramp-error constants?

國立成功大學九十五學年度碩士班招生考試試題

系所:工程科學系甲組·戊紀、己紀

科目:控制系統

本試題是否可以使用計算機: ☑可使用 , □不可使用

(請命題老師勾選)

6. (15%) A second-order nonlinear system is described by the following state equations:

$$\dot{x} = -x + y^2$$

$$\dot{y} = x - 4$$

- (a) (5%) Find the equilibrium points of this system.
- (b) (5%) Find the linearized state equations about the equilibrium points.
- (c) (5%) Are the lineaized systems stable?