國立成功大學九十五學年度碩士班招生考試試題

共/頁,第/頁

編號: 长151 系所:工程科學系乙組

科目:數值分析

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

- 1. (a) Using Lagrange interpolation to find f(x) (10%) and calculate (b) $\int_{x_1}^{x_3} f(x) dx$ for the data $\{x_i, f(x_i)\}_{i=1}^{i=3}$ with $x_i = (i-1)h + x_1$. (5%)
 - (c) Using the above result to obtain the expression of $\int_{x_1}^{x_2} f(x)dx$ in terms of h, x_i and $f(x_i)$ for $i = 1 \sim 7$. (10%)
- 2. Suppose p to be one solution of f(x) = 0 obtained by Newton' method $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$

Questions: (a) Plot the meaning of the iteration (10%), and (b) find the rate of convergence (15%).

3. The Runge-Kutta method for solving y' = f(t, y) with the initial conditions $y(t_0) = \alpha$ is expressed as

$$w_0 = \alpha$$
, $k_1 = hf(t_i, w_i)$, $k_2 = hf(t_i + \frac{1}{2}h, w_i + \frac{1}{2}k_1)$, $k_3 = hf(t_i + \frac{1}{2}h, w_i + \frac{1}{2}k_2)$,

$$k_4 = hf(t_{i+1}, w_i + k_3), \quad w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \quad h = t_{i+1} - t_i$$

for i = 0, 1, ...

Question: How to use the Runge-Kutta method to solve y'' = f(t, y, y') with $y(t_0) = \alpha_1$ and $y'(t_0) = \alpha_2$ (25%).

4. (Least square method) The y = ax + b is used to approximate the data

$$\{x_i, f(x_i)\}_{i=1}^{i=n}$$
. Question: Find the value of $\sum_{i=1}^{n} [y_i - f(x_i)]^2$. (25%)