1．Locate the center of gravity of the element shown in Fig．1．Both holes are of 25 mm diameter． （ 20% ）
2．A clamp is used to hold two pieces of wood together as shown in Fig．2．The clamp has a double square thread of mean diameter equal to 10 mm and with a pitch of 2 mm ．The coefficient of friction between threads is $\mu_{\mathrm{s}}=\mathbf{0 . 3 0}$ ．If a maximum torque of $\mathbf{4 0} \mathrm{N}-\mathrm{m}$ is applied in tightening the clamp，determine（a）the force exerted on the pieces of wood，（b）the torque required to loosen the clamp．（ 20% ）
3．At a point on the surface of a pressurized cylinder，the material is subjected to biaxial stress $\sigma_{\mathrm{x}}=$ 90 Mpa and $\sigma_{y}=20 \mathrm{MPa}$ ，as shown on the stress element of Fig．3．Using Mohr＇s circle， determine the stresses acting on an element inclined at an angle $\theta=30^{\circ}$ ．Consider only the in－plane stresses，and show the results on a sketch of a properly oriented element．（ 20% ）
4．Determine the vertical displacement δ_{B} of joint B of the truss shown in Fig．4．Note that the only load acting on the truss is a vertical load P at joint B ．Assume that both members of the truss have the same axial rigidity EA．（ 20% ）
5．A simple beam with an overhang supports a uniform load of intensity q on span $A B$ and a concentrated load P at end C of the overhang（Fig．5）．Determine the deflection δ_{C} and angle of rotation θc at point C．（ 20% ）．

Fig． 1

Fig． 2

Fig． 3

Fig． 5

