•			
编號:	87	國立成功大學一○○學年度碩士班招生考試試題	共4頁,第]頁
系所約	且別: 化	學工程學系甲組	
考試利	斗目: 單方	元操作與輸送現象	考試日期:0219, 節次:1
※考	生請注意	:本試題 □ 「一不可使用計算機	
1.	Please br using a re (Hint: D determine	riefly describe an experimental procedure to determine the viscosit eference fluid with known viscosity, a capillary tube, and a timer. (7% eriving an equation is needed. Based on it, the viscosity of an ed.)	y of an unknown fluid) unknown fluid can be
2.	Consider with a ve rod and th No-slip c (a) Derive (b) Derive (7%) (c) Derive	a vertical wire-coating process as shown below, in which the cylindrilocity V. The rod is at the center of the cylindrical die. The fluid filling the inner cylinder wall has density ρ and viscosity μ . Assume the flow ondition is applied on the surface of the cylinder and rod. The the differential momentum balance in the z direction. (6%) at the fluid velocity distribution in the space between the rod and the stress acting on the surface of the rod. (5%)	ical rod is being moved g the space between the w is laminar and steady. the inner cylinder wall.
		Pressure po The cylinder of inner diameter D	

where the shear stress components

$$\begin{aligned} \tau_{r\theta} &= \tau_{\theta r} = \mu \left[r \frac{\partial}{\partial r} \left(\frac{\upsilon_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial \upsilon_{r}}{\partial \theta} \right] \\ \tau_{z\theta} &= \tau_{\theta z} = \mu \left[\frac{\partial \upsilon_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial \upsilon_{z}}{\partial \theta} \right] \\ \tau_{zr} &= \tau_{rz} = \mu \left[\frac{\partial \upsilon_{z}}{\partial r} + \frac{\partial \upsilon_{r}}{\partial z} \right] \end{aligned}$$

The rod of

diameter d moving with velocity V

(背面仍有題目,請繼續作答)

g

Pressure po

編號: 87

系所組別: 化學工程學系甲組

考試科目: 單元操作與輸送現象

- 3. Write down the description, definition or expression for the following:
 - (a) Newton's law of cooling (or the Newton rate equation). (2%)
 - (b) Nusselt number. (2%)
 - (c) Heat exchanger effectiveness. (2%)
 - (d) Economy of an evaporator. (2%)
 - (e) Stefan-Boltzmann law for energy emitted from a black surface. (2%)

4. A thin slab is subjected to microwave radiation that causes volumetric heating to vary according to:

$$\dot{q}(x) = \dot{q}_0 \left[1 - \left(\frac{x}{L}\right)^2 \right]$$

where \dot{q}_0 has a constant value of 40 kW/m³. The thickness of the slab, L, is 0.12 m and its thermal conductivity, k, is 0.6 W/(m.K). The boundary at x=L is perfectly insulated, while, at x=0, the temperature T₀ is maintained at 300 K.

- (a) Determine an expression for T(x) in terms of x, L, k, \dot{q}_0 and T₀. (11%)
- (b) Where will the maximum temperature occur in the slab? (2%)
- (c) What is the value of T_{max} ? (2%)
- A 3 mm diameter air bubble is introduced into pure water from the bottom of a container of depth 0.5 m. Assume it rises at the terminal velocity v_t and the water temperature is 20°C. The viscosity of water at 20°C is 1 cp.
 - (a) Estimate the terminal velocity v_{t} . (5%)

(b) Estimate the amount of oxygen absorbed by water from the single bubble. It is assumed that the pressure inside the bubble is 1 atmosphere. Henry's constant (H) of oxygen in water and the diffusion coefficient (D_L) of oxygen in water at 20°C are given as follows (8%)

H = 40100 atm, $D_1 = 2.08 \times 10^{-9} \text{ m}^2 / \text{s}$

In addition, the mass transfer coefficient k can be estimated by

$$k = \sqrt{\frac{4D_L v_t}{3\pi D}}$$

where D is the diameter of air bubble.

編號: 87

國立成功大學一○○學年度碩士班招生考試試題

共4頁,第3頁

系所組別: 化學工程學系甲組考試科目: 單元操作與輸送現象

考試日期:0219,節次:1

※ 考生請注意:本試題 1☑可 □不可 使用計算機

6. A solid sphere of substance A is suspended in a liquid B in which it is <u>slightly</u> soluble, and with which it undergoes a first-order chemical reaction with rate constant k_1 , i.e., $R_A = -k_1C_A$, where C_A is the molar concentration of A in the liquid. At steady state, the diffusion is exactly balanced by the chemical reaction. To simplify the analysis, it is assumed that the bulk flow induced by the diffusion process can be neglected.

(a) Derive the governing equation and appropriate boundary conditions for species A to describe the diffusion-reaction process in the liquid phase. State your symbols and assumptions clearly. (4%)

 $\frac{\partial \rho_{\mathbf{A}}}{\partial t} + \nabla \bullet \mathbf{n}_{\mathbf{A}} = \mathbf{r}_{\mathbf{A}}; \text{ or } \frac{\partial C_{\mathbf{A}}}{\partial t} + \nabla \bullet \mathbf{N}_{\mathbf{A}} = \mathbf{R}_{\mathbf{A}}$

(b) Solve the above equation to get the concentration profile of A. (8%)

The following information may be useful.

The solution to the differential equation $x^2y' + 2xy' - a^2x^2y = 0$ is $y = \frac{C_1}{x}e^{ax} + \frac{C_2}{x}e^{-ax}$

The solution to the differential equation $x^2y'' + 2xy' + a^2x^2y = 0$ is $y = \frac{C_1}{x}\cos ax + \frac{C_2}{x}\sin ax$

Equation of Continuity of Species A

Laplacian of a scalar s $(\nabla^2 s) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial s}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial s}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 s}{\partial \phi^2}$

7. Nitrogen is used in a packed column to strip SO₂ from water. The entering water contains 0.4 mol% SO₂ and a 90% removal of SO₂ is desired. The liquid flow rate is 10 mol/s and the cross-sectional area

(背面仍有題目,請繼續作答)

編號:

國立成功大學一○○學年度碩士班招生考試試題

系所組別: 化學工程學系甲組

87

考試科目: 單元操作與輸送現象

※ 考生請注意:本試題 □ □ □ 不可 使用計算機

of the column is 5 m². The equilibrium relationship may be taken as $y_e = 10x_e$, where x_e and y_e denote the equilibrium mole fraction in liquid and gas respectively.

(a) What is the difference between absorption and stripping? (2%)

(b) What is the minimum gas flow rate (G_{min}) required for achieving the desired stripping? (4%)

(c) If G (gas flow rate) = $1.2G_{min}$, what is the mole fraction of SO₂ in the outlet nitrogen? (3%)

(d) Using the gas rate G from part (c) and knowing that the individual phase mass transfer coefficients are constant values of $k_x a = 0.03 \text{ mol/m}^3 \text{s}$ and $k_y a = 0.01 \text{ mol/m}^3 \text{s}$ for this system, calculate the overall height of a transfer units, H_{Oy}, for the column. (3%)

(e) What would be the overall height of packing required for the desired separation using the gas flow rate from part (c). (5%)

(f) At the point in the column where the liquid phase mole fraction is 0.0015 in the bulk, what are the interfacial gas and liquid mole fractions? (5%)

(g) If there is a novel column packing claimed a reduction in the operation cost by increasing the interfacial SO_2 concentration in the nitrogen relative to the water, would you consider the packing as a superior separation material? Why or why not? (3%)