編號： 91

Inorganic Chemistry and Analytical Chemistry（total points：100）

Part I：Inorganic Chemistry（total points：50）
（1）Determine the possible microstates for an $s^{1} p^{1}$ configuration，and use them to prepare a microstate table．（ 10 pts ）
（2）Determin the possible values of J（total angular momentum quantum number）for the carbon terms．（ 5 pts ）
（3）Confirm that a（real） $2 p_{x}$ orbital is orthogonal to a（real） $2 p_{y}$ orbital of the same attom．（ 5 pts ）
（4）Reduce the following representations to their irreducible representations in the point group indicated：（ 10 pts ）

$C_{2 h}$	E	C_{2}	i	σ_{h}
Γ	4	0	2	2

（5）Using the angular overlap model，determine the splitting pattern of d orbitals for a tetrahedral complex of formula MX_{4} ，where X is a ligand that can be act as σ donor and π donor．（ 10 pts ）
（6）For which $d^{\prime \prime}$ configurations would no Jahn－Teller splituing expected for the tetrahedral case（ignore possible low－spin case）（ 10 pls ）

系所組別：化學工程學系乙組

考試科目：無機化學及分析化學

※ 考生請注意：本試題 口可 \square 不可 使用計算機

Part II：Analytical Chemistry（Total points：50）
（1）A spectrum has a signal－to－noise ratio of $\$ / 1$ ．How many spectra must be averaged to increase the signal－to－noise ratio to 20／1？（5 pts）
（2）A solution was prepared by mixing 10.00 mL of unknown（X）with 5.00 mL os tandard（ S ）containing $8.24 \mu \mathrm{~g} \mathrm{~S} / \mathrm{mL}$ and diluting the mixitue to 50.0 mL ．The measured signal quotient was（signal due to $\mathrm{X} /$ signal due to S ）$=1.690 / 1.000$ ．
（a）In a separate experiment in which the concentrations of X and S were equal， the quotient was（signal due to $\mathrm{X} /$ signal duc to S$)=0.930 / 1.000$ ．What is the concentration of X in the unknown？（ 5 pts ）
（b）Answer the same question if，in a separate experiment in which the concentration of X was 3.42 times the concentration of S ，the quotient was （signal due to $X /$ signal due to S ）$=0.930 / 1.000$ ．（ 5 pts ）
（3）State the advantages and disadvantages of a furnace compared a flame in atomic absorption spectroscopy．（ 5 pts ）
（4）Tivo ；olutes have a separation factor of $\gamma=1.06$ ．How many plates are required to give a resolution of 1.0 ？of 2.0 ？If the plate height is 0.20 mm ，how long must the column be for a sesolution of 1.0 ？（ 5 pts ）
（5）The cell $\operatorname{SCEII}^{-}(x \mathrm{M}), \mathrm{PbI}_{2}(\mathrm{~s}) \mid \mathrm{Pb}$
（a）Develop an equation that relates the potential of the cell to pl ．（ 5 pts ）
（b）Calculate pI if the cell has a potential of -0.348 V （ 5 pts ）

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2-1} \mathrm{~d}\left[\mathrm{l}^{-}\right]^{2}=79 \times 10^{-9}\right. \\
& E_{\mathrm{Pl} 2+/(\mathrm{Pb}}^{0}=-0.126 \mathrm{~V} \\
& E_{\mathrm{SCC}}=0.244 \mathrm{~V}
\end{aligned}
$$

（6）A mixture of 14 compounds was subjucted to a reversed－phase gradient separation going from 5% to 100% acetonitrile with a gradient time of 60 min ．The sample was injected at $\mathrm{t}=\mathrm{dwell}$ time．All peaks were eluted between 22 and 41 min ．
（a）Is the mixture more suitable for isocratic or gradient elution？（ 5 pts ）
（b）If the next run is a gradient，select the starting and ending $\%$ acetonitrile and the gradient time．（ 10 pts ）

