※ 考生請注意：本試題可使用計算機，並限「考選部核定之國家考試電子計算器」機型

1．Answer the following questions：
（18\％）
（a）Compare the $\Delta \mathrm{S}$ values for the acid dissociation of the following species and explain why：（4\％） （1）trimethylammonium ion，（2）dimethylammonium ion，（3）methylammonium ion，（4）ammonium ion
（b）State the assumption（s）of ideal adsorption．
（c）The work done on the surrounding by a reversible process is higher than that by an irreversible． Explain why and state where the lost work goes．
（d）For a closed system in which liquid and vapor are in equilibrium at a fixed temperature，does the vapor pressure increase or decrease when an inert gas is added to the gas phase？Why？（5\％）
2．Prove that $\Delta_{m i x} V=0$ for an ideal solution and explain why from the viewpoint of molecular interaction．（ $\mathbf{1 0 \%}$ ）
3．Describe the phenomenon of＂osmosis＂（4\％）and derive the equation $\pi=c R T$ for a dilute ideal solution，where π is the osmotic pressure，c is the molar concentration of solute，R is gas constant，and T is the temperature（ 8% ）．
4．The effect of temperature on the standard emf of the following cell from 0 to $90^{\circ} \mathrm{C}$ is

$$
\begin{align*}
& \mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HCl}(\mathrm{~m})|\mathrm{AgCl}(\mathrm{~s})| \mathrm{Ag}(\mathrm{~s}) \mid \mathrm{Pt} \\
& E^{\circ}=0.23659-4.8564 \times 10^{-4} t-3.4205 \times 10^{-6} t^{2}+5.869 \times 10^{-9} t^{3}
\end{align*}
$$

where the units of E° and t are V and ${ }^{\circ} \mathrm{C}$ ．Calculate $\Delta G^{\circ}, \Delta H^{\circ}, \Delta S^{\circ}, \Delta C_{P}{ }^{\circ}$ ，and the equilibrium constant of the cell reaction at $25^{\circ} \mathrm{C}$ ．
5．Consider the series of first－order irreversible reactions（15\％）
$\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{~B} \xrightarrow{\mathrm{k}_{2}} \mathrm{C}$

The initial concentration of A is $[\mathrm{A}]_{0}$ ．Neither B nor C is present initially．
（a）Show that the concentration of B can be expressed as

$$
[B]=\frac{k_{1}[A]_{0}}{k_{2}-k_{1}}\left(e^{-k_{1} t}-e^{-k_{2} t}\right)
$$

（b）Derive the time at which the concentration of B reach a maximum？
6．The surface tension of water at $20^{\circ} \mathrm{C}$ is $7.27 \times 10^{-2} \mathrm{Nm}^{-1}$ and its density is $0.998 \mathrm{~g} \mathrm{~cm}^{-3} .(\mathbf{1 5 \%})$
（a）Assuming the contact angle is zero，calculate the rise of water at $20^{\circ} \mathrm{C}$ in a capillary tube with the radius of 0.1 mm ．
（b）If a liter of water at $20^{\circ} \mathrm{C}$ is broken up into a spray in which the droplets have an average radius of $10^{-7} \mathrm{~cm}$ ．Calculate（i）the Gibbs energy change when the droplets are formed and（ii）the ratio between the vapor pressure of the droplet and the vapor pressure of water at a plane surface． （10\％）
7．An ideal monatomic gas at 300 K and 10 bar initially expands adiabatically to 1 bar against a constant pressure of 1 bar，what are $w_{m}, \Delta U_{m}, \Delta H_{m}, \Delta S_{m}$ and final temperature？（15\％）

