編號: 91

國立成功大學一〇一學年度碩士班招生考試試題

系所組別: 化學工程學系乙組

考試科目: 物理化學

考試日期:0225,節次:3

共 / 頁·第/頁

※ 考生請注意:本試題可使用計算機,並限「考選部核定之國家考試電子計算器」機型

- 1. Answer the following questions: (18%)
- (a) Compare the ΔS values for the acid dissociation of the following species and explain why: (4%) \bigcirc trimethylammonium ion, \oslash dimethylammonium ion, \oslash ammonium ion
- (b) State the assumption(s) of ideal adsorption. (4%)
- (c) The work done on the surrounding by a reversible process is higher than that by an irreversible.Explain why and state where the lost work goes. (5%)
- (d) For a closed system in which liquid and vapor are in equilibrium at a fixed temperature, does the vapor pressure increase or decrease when an inert gas is added to the gas phase? Why? (5%)
- 2. Prove that $\Delta_{mix}V = 0$ for an ideal solution and explain why from the viewpoint of molecular interaction. (10%)
- 3. Describe the phenomenon of "osmosis" (4%) and derive the equation $\pi = cRT$ for a dilute ideal solution, where π is the osmotic pressure, c is the molar concentration of solute, R is gas constant, and T is the temperature (8%). (12%)
- 4. The effect of temperature on the standard emf of the following cell from 0 to 90° C is

Pt $|H_2(g)|HCl(m)|AgCl(s)|Ag(s)|Pt$

 $E^{\circ} = 0.23659 - 4.8564 \times 10^{-4} t - 3.4205 \times 10^{-6} t^{2} + 5.869 \times 10^{-9} t^{3}$

where the units of E° and t are V and \mathcal{C} . Calculate ΔG° , ΔH° , ΔS° , ΔC_{P}° , and the equilibrium constant of the cell reaction at 25°C. (15%)

5. Consider the series of first-order irreversible reactions (15%)

 $A \xrightarrow{k_1} B \xrightarrow{k_2} C$

The initial concentration of A is $[A]_0$. Neither B nor C is present initially.

(a) Show that the concentration of B can be expressed as (9%)

$$[B] = \frac{k_1[A]_0}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right)$$

(b) Derive the time at which the concentration of B reach a maximum? (6%)

- 6. The surface tension of water at 20°C is 7.27×10^{-2} Nm⁻¹ and its density is 0.998g cm⁻³. (15%)
 - (a) Assuming the contact angle is zero, calculate the rise of water at 20°C in a capillary tube with the radius of 0.1 mm. (5%)
 - (b) If a liter of water at 20°C is broken up into a spray in which the droplets have an average radius of 10⁻⁷ cm. Calculate (i) the Gibbs energy change when the droplets are formed and (ii) the ratio between the vapor pressure of the droplet and the vapor pressure of water at a plane surface. (10%)
- 7. An ideal monatomic gas at 300K and 10 bar initially expands adiabatically to 1 bar against a constant pressure of 1 bar, what are w_m , ΔU_m , ΔH_m , ΔS_m and final temperature? (15%)