※ 考生請注意：本試題可使用計算機
1．（33\％）Consider a certain gas whose PVT behavior is governed by Dieterici equation of state：

$$
P(V-b)=R T \exp \left(-\frac{a}{R T V}\right)
$$

where a and b are constant parameters（but not necessarily positive）．Please answer the following questions：
（a）Suppose $|b / V| \ll 1$ and $|a / R T V| \ll 1$ ．Expand the above equation of state as a virial equation of state in the form：$P V / R T=1+B / V+C / V^{2}+\ldots$ ．Determine the $2^{\text {nd }}$ virial coefficient，B ，and the $3^{\text {rd }}$ virial coefficient，C．（10\％）
（b）Now consider the virial equation of state up to the $2^{\text {nd }}$ virial term in（a）．Suppose that the gas undergoes slow isothermal compression．If the work needed for accomplishing this compression is always greater than that for an ideal gas，the parameters a and b must satisfy a certain criterion．What is the criterion？Explain your answer physically．（12\％）
（c）Follow（b）．If the compression is suddenly performed，will the work here be greater or less than that in（b）？Why？（3\％）
（d）Suppose that the gas can be condensed into liquid at a sufficiently low temperature．This transition can only happen when a and b have proper signs（i．e．>0 or <0 ）．What the signs of a and b should be？Why？（8\％）

2．（24\％）Answer＂True＂or＂False＂．If you answer is＂false＂，you MUST explain it．
（1）No process is possible which consists of the transfer of heat from one temperature level to a higher one．
（2）The residual property M^{R} is defined as $M^{R} \equiv M-M^{i g}$ ，where M and $M^{i g}$ are the actual and the ideal－gas values of the thermodynamic property at the same T and P ．
（3）The relation $T d S+V d P=-u d u$ is valid for the homogeneous phase with change between equilibrium states，which is generated from the energy balance for the adiabatic，steady－state／ steady（one－dimensional；single influent／single effluent）flow of a fluid in the absence of shaft work and of changes in potential energy．
（4）For one kind of the internal combustion engines，Otto cycle（Otto engine），it is also a traditional four－struck piston－cylinder process．Before combustion，the temperature of the Otto engine is extremely high as to ignite the combustion automatically．
（5）Considering a heat engine as a system，then，the entropy change of the heat engine should not be less than zero．
（6）$\left\langle C_{p}^{i g}\right\rangle_{s}=\frac{\int_{T_{u}}^{T} C_{p}^{i g} d T / T}{\left(T-T_{o}\right)}$ ，where $\left\langle C_{P}^{i g}\right\rangle_{S}$ denotes a mean value of specific heat capacity for the calculation of entropy change caused by temperature change．

系所組別：化學工程學系甲組
考試科目：化工熱力學
※ 考生請注意：本試題可使用計算機
3．（9\％）

$$
\begin{aligned}
& V \cdot\left(1-M^{2}\right) \cdot \frac{d P}{d x}+T \cdot\left(1+\frac{\beta u^{2}}{C_{p}}\right) \cdot \frac{d S}{d x}-\frac{u^{2}}{A} \cdot \frac{d A}{d x}=0 \\
& u \frac{d u}{d x}-T \cdot\left(\frac{\beta u^{2} / C_{P}+M^{2}}{1-M^{2}}\right) \cdot \frac{d S}{d x}+\left(\frac{1}{1-M^{2}}\right) \cdot \frac{u^{2}}{A} \cdot \frac{d A}{d x}=0
\end{aligned}
$$

（a）For the isentropic and subsonic flow in a convergent－divergent nozzle，please analyze $\frac{d P}{d x}, \frac{d u}{d x}$ along the nozzle（for examples，increasing，decreasing，etc．），respectively．（6\％）
（b）Where is the place in the nozzle for the maximum obtainable fluid velocity that can be reached？（3\％）

4．（10\％）In a binary mixture，P_{A} and P_{B} are the partial vapor pressure of the two constituents，and \boldsymbol{x}_{A} and x_{B} are the mole fractions of the liquid．Assume that the vapor mixture could be regarded as an ideal gas．

Please express $\left(\frac{d \ln P_{A}}{d \ln P_{B}}\right)_{T, P}$ as a function of \boldsymbol{x}_{A} and \boldsymbol{x}_{B} ．

5．（24 \％）Trichloromethane（1），aka chloroform，and ethanol（2）form an azeotrope at $P=101.33 \mathrm{kPa}$ ， which contains 84.10 mol\％of chloroform（1）and boils at 332.45 K ．
（a）Estimate the van Laar constants，α and β ，in the following van Laar equation for the activity coefficients， $\boldsymbol{\gamma}_{1}$ and γ_{2} ．

$$
\ln \gamma_{1}=\frac{\alpha}{\left(1+\frac{\alpha x_{1}}{\beta x_{2}}\right)^{2}} \text { and } \ln \gamma_{2}=\frac{\beta}{\left(1+\frac{\beta x_{2}}{\alpha x_{1}}\right)^{2}}
$$

（b）Find the azeotropic composition and the pressure $P(\mathrm{kPa})$ if the binary mixture boils at 320 K ． Assume that the van Laar constants are still the same．
The vapor pressures of chloroform（1）and ethanol（2）could be well described by the Antoine Equation， $\log _{10}(P)=A-\frac{B}{T+C}$ ，where \boldsymbol{P} is the vapor pressure in bar， \boldsymbol{T} the temperature in \boldsymbol{K} ，and the Antoine Equation parameters（A，B，and C）given as follows．

\boldsymbol{P}（bar）	$\boldsymbol{T}(\mathrm{K})$	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
Chloroform（1）	$215.0-334.4$	4.20772	1233.129	-40.953
Ethanol（2）	$292.77-366.63$	5.24677	1598.673	-46.424

