國立成功大學 102 學年度碩士班招生考試試題

系所組別:化學工程學系甲組 考試科目:化學反應工程

編號: 86

考試日期:0223,節次:3

※ 考生請注意:本試題可使用計算機

1 • A reactor system is to be designed for 85% conversion of A in a second-order liquid-phase reaction, A \rightarrow products; $k_A = 0.075 \text{ L mol}^{-1}$, $v_0 = 25 \text{ L min}^{-1}$ (volumetric flow rate), and $C_{A0} = 0.04 \text{ mol} \text{ L}^{-1}$. The cost of a vessel is \$ 0.29 L⁻¹, but a 10% discount applies if both vessels are of the same size and geometry. The design options are:

(A) two equal-sized stirred tanks in series; what is the capital cost of this design? (11%)

(B) two stirred tanks in series to provide a minimum total volume: what is the capital cost of this design? (11%)

(Hint: the solutions may be obtained by trial & error.)

2 · Calculate the ratio of the volumes of a CSTR and a PFR (V_{ST}/V_{PF}) required to achieve a fractional conversion of 0.99 for the reactant A with an identical feed rate for each reactor, if the liquid-phase reaction A \rightarrow products is

(A) first-order with respect to A (please find the value of $V_{\text{ST}}/V_{\text{PF}}$?) (5%)

(B) second-order with respect to A (please find the value of V_{ST}/V_{PF} ?) (7%)

3 • An enzyme Glucose 6-phosphatase has a K_M value of 10^{-4} M and a k_3 value of 10^4 min⁻¹ at 37°C. The reaction catalyzed is the following:

 α -D-Glucose 6-phosphate $\xrightarrow{Glucose 6-phosphatase}$ D-Glucose

Which can be represented as

$$E + S \xrightarrow[k_2]{k_1} ES \xrightarrow[k_3]{k_3} E + P$$

Where S is α -D-Glucose 6-phosphate and P is D-glucose, E is the enzyme Glucose 6-phosphatase. The enzyme is not stable at 37 °C and the amount of active enzyme will decrease along time:

$$E = E_0 e^{-k_d t}$$

Where E_0 is the initial enzyme concentration and $k_d = 0.1 \text{ min}^{-1}$. In an experiment, a certain amount of enzyme and 0.02M of α -D-Glucose 6-phosphate is added into a batch reactor and incubated at 37°C. After 12 hours, the concentration of D-glucose is found to be 0.002M. What is the initial concentration of enzyme (E_0) ? (8%)

(背面仍有題目,請繼續作答)

國立成功大學 102 學年度碩士班招生考試試題

系所組別:化學工程學系甲組

考試科目:化學反應工程

編號: 86

※ 考生請注意:本試題可使用計算機

4 · Cyclohexanol was passed over a catalyst to form water and cyclohexene:

cyclohexanol \longrightarrow water + cyclohexene

The following data were obtained:

Run	Reaction rate	Partial pressure of	Partial pressure of	Partial pressure of
	$(mol/dm^3 \cdot s) \times 10^5$	cyclohexanol	cyclohexene	steam (H ₂ O)
1	3.30	1	1	1
2	1.05	5	1	1
3	0.57	10	1	1
4	1.83	2	5	1
5	1.49	2	10	1
6	1.36	3	0	5
7	1.08	3	0	10
8	0.86	1	10	10
9	0.00	0	5	8
10	1.37	3	3	3

It is suspected that the reaction may involve a dual-site mechanism. Please suggest a reaction mechanism and corresponding rate law for the above data. Detailed rationales and supporting calculations are required. (12%)

- 5 Reactant A at $P_{A0} = 500$ kPa is to be passed through a packed bed catalytic reactor where it will decompose into either R or S. To maximize the formation of R, determine:
 - (A) Should the reactor operated in the strong pore diffusion regime or reaction rate limited regime? Please state your reason in detail and provide equations to validate your statement. (5%)

(B) Following (A), what is the length of the reactor if the conversion of A is 90%? (8%) Additional information:

 $R, r_R = 0.02C_A$

without the diffusion limitation, the reaction rates of R and S are: A

 $\sim S$, $r_s = 0.03C_A$

Effective diffusivity of A: $2.66 \times 10^{-8} m^2/_S$

Catalyst pellet diameter: 0.4 cm

(背面仍有題目,請繼續作答)

共 3 頁,第2頁

考試日期:0223、節次:3

• •	×		
編號: 86 國立成功大學 102	學年度碩士班打	召生考試試題	共 3 頁,第3頁
系所組別:化學工程學系甲組			
考試科目:化學反應工程			考試日期:0223,節次:3
※考生請注意:本試題可使用計算機			
Catalyst pellet density: $2 \times 10^6 \ g/m^3$			
Internal surface area of the catalyst pellet	$400 \ m^2/g$		
Linear velocity of A: $3 m/s$			
Inlet temperature: 250 °C			
6 • The following liquid-phase reactions we	re carried out in	a 100-dm ³ PFR at 300K.	The entering volumetric
flow rate was 10 dm ³ /min, with equal mo			
$A + 2B \rightarrow 2C + 3D$ $r_{1D} =$			
$2D + 3A \rightarrow C + 2E$ $r_{2E} =$			
$B + 2C \rightarrow 3D + 4F$ $r_{3F} =$			
(A) Please list out all the equations you n			
concentrations and the instantaneous	-	-	
undesired products) as a function of r	-		
(B) Please qualitatively describe how to e		-	actor would be suitable.
(3%)			
7 • Please explain the phenomenon of "mu	inle steady state	" in a nonisothermal CST	R running an exothermic
and first-order reaction and define the co	-		
Hint: By neglecting the shaft work and a			2070)
-X $\Delta H_{Rx}^{o} = C_{P0}(1 + \kappa)(T - T)$			
where $C_{P0} = \Sigma \Theta_i C_{Pi}$; $\kappa = (UA/C_{P0}F)$	- •	$(1 + \kappa)$	
(X: conversion; ΔH_{Rx}^{0} : heat of rea		,	· heat transfer area: T.:
coolant temperature)			

•