Inorganic Chemistry and Analytical Chemistry

Part I：Inorganic Chemistry（50\％）

（1）Give the valence electron count for the following species，and indicate whether they obey the EAN rule or not？（10\％）
（a） $\mathrm{W}(\mathrm{CO})_{6}$
（b） $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}$
（c） $\mathrm{Cr}(\mathrm{CNMe})_{6}$
（d） $\mathrm{HRh}(\mathrm{CO})_{4}$
（e）$\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$
（2）Balance the following equations．Also give the details how you balance them．（10\％）
（a） $\mathrm{H}_{2} \mathrm{O}+\mathrm{P}_{2} \mathrm{I}_{4}+\mathrm{P}_{4} \rightarrow \mathrm{PH}_{4} \mathrm{I}+\mathrm{H}_{3} \mathrm{PO}_{2}$
（b） $\mathrm{ICl}+\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \rightarrow \mathrm{I}_{2}^{+}+\mathrm{I}\left(\mathrm{HSO}_{4}\right)_{3}+\mathrm{HS}_{3} \mathrm{O}_{10}{ }^{-}+\mathrm{HSO}_{3} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{SO}_{4}$
（3）（a）Explain why the ligand field（ $d-d$ ）bands are shifted only slightly for the $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{X}\right]^{2+}$ ions， but the charge transfer bands are shift greatly．（5\％）
（b）Explain why square planar complexes of transition metals are limited（other than those of planar ligands such as porphyrins）to those of（i）d^{7}, d^{8} ，and d^{9} ions and（ii）very strong field ligands which can be serve as π acceptors．（5\％）
（4）What is a generalized acid－base concepts？Based on this concept，what is the＂ultimate＂acid？What is the＂ultimate＂base？（10\％）
（5）Qualitatively sketch the Orgel diagram for the Cr^{3+} ion an octahedral field．（10\％）

Part II：Analytical Chemistry（50\％）

（6）List general properties of activity coefficients（8\％）．Make a distinction between activity and activity coefficient（2\％）．
（7）Calculate the molar solubility of $\mathrm{BaSO}_{4}\left(\mathrm{Ksp}=1.1 \times 10^{-10}, \mathrm{~K}_{2}\right.$ of $\left.\mathrm{H}_{2} \mathrm{SO}_{4}=1.02 \times 10^{-2}\right)$ in a solution that has a fixed H^{+}concentration of（a） $2.5 \mathrm{M}(5 \%)$ and（b） $0.060 \mathrm{M}(5 \%)$ ．
（8）Please describe the difference between crystalline precipitates process and coagulated colloids－filtration process（ 10% ）．
（9）An iron ore was analyzed by dissolving a $1.1324-\mathrm{g}$ sample in concentrated HCl ．The resulting solution was diluted with water，and the iron（III）was precipitated as the hydrous oxide $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot$ $x \mathrm{H}_{2} \mathrm{O}$ by the addition of NH_{3} ．After filtration and washing，the residue was ignited at a high temperature to give 0.5394 g of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}(159.69 \mathrm{~g} / \mathrm{mol})$ ．Calculate（a）the $\% \mathrm{Fe}(55.847 \mathrm{~g} / \mathrm{mol})$ and（b）the $\% \mathrm{Fe}_{3} \mathrm{O}_{4}(231.54 \mathrm{~g} / \mathrm{mol})$ in the sample（ 10% ）．
（10）The arsenic（ $74.92 \mathrm{~g} / \mathrm{mol}$ ）in a $1.010-\mathrm{g}$ sample of a pesticide was converted to $\mathrm{H}_{3} \mathrm{AsO}_{4}$ by suitable treatment．The acid was then neutralized，and exactly 40.00 mL of $0.06222 \mathrm{M} \mathrm{AgNO}_{3}$ was added to precipitate the arsenic quantitatively as $\mathrm{Ag}_{3} \mathrm{AsO}_{4}$ ．The excess Ag^{+}in the filtrate and in the washings from the precipitate was titrated with 10.76 mL of 0.1000 M KSCN ．Calculate the percent $\mathrm{As}_{2} \mathrm{O}_{3}$ in the sample（ 10% ）．

