I 								
	位成功大	學 102 學	年度碩士	班招生考	試試題	共 2 頁	€・第Ⅰ頁	
	系所組別:化學工程學系乙組							
	新計計算:物理化學 考試日期:0223,節次						0223、節次:3	
※ 考生請注意:本試題可使用計算機								
1. For one mole of a van der Waals gas, $(P + \frac{a}{V_m^2})(V_m - b) = RT$, at temperature T is expanded reversibly and								
isothermally from a volume V_1 to a volume V_2 (a) Show that the reversible work is $w_{rev} = -RT \ln \frac{V_2 - b}{V_1 - b} + a(\frac{1}{V_1} - \frac{1}{V_2})$								
and the internal energy change is $\Delta U_m = \alpha (\frac{1}{V_i} - \frac{1}{V_2})$. (10%) (b) If the gas expands isothermally into an evacuated								
vessel so that the volume changes from V_1 to V_2 , calculate w , q , and ΔU_m . (5%)								
2. One mole of supercooled water at -15°C and 1 atm pressure turns into ice. Calculate the entropy change in the								
system and in the surroundings and the total entropy change.								
(13%)								
Given : $C_{P}(water) = 75.3 \text{ JK}^{-1}\text{mol}^{-1}$, $C_{P}(ice) = 37.7 \text{ JK}^{-1}\text{mol}^{-1}$, $\Delta_{fus}H^{o} = 6.02 \text{ kJ mol}^{-1}$.								
3. At 25.0 °C the equilibrium constant K_{ρ} for the reaction (15%)								
$CO(g) + H_2O(g) = CO_2(g)$	(g) + H ₂ (g)							
is 1.00 x 10^{-5} , and ΔS° is 41.	8 J K ⁻¹ mol ⁻¹	L.						
(a) Calculate ΔG° and ΔH° at 25.0 °C.								
(b) Suppose that 1 mol of CO and 2 mol of H ₂ O are introduced into a 10-dm ³ vessel at 25.0°C. What are the moles of CO, H ₂ O, CO ₂ , and H ₂ at equilibrium?								
(c) What would be the effect on the equilibrium of adding N_2 to the reaction mixture in a closed stainless steel								
vessel ?								
(d) What would be the shift of equilibrium when the temperature is increased ?								
4. The following data were measured for the adsorption of nitrogen on mica at 20°C:								
P/atm	2.8	4.0	6.0	9.4	17.1	33.5		
v/mm ³ (20 °C and 1 atm)) 12.0	15.1	19.0	23.9	28.2	33.0		
(a) Draw a plot to show that the data are consistent with the Langmuir isotherm and calculate the values of v_m and K								
(9%)								
(b) Calculate the effec	tive surfac	ce area (of mica i	f each ni	trogen mo	plecule occupies 16.2	2 x 10 ⁻²⁰ m ² .	

(背面仍有題目,請繼續作答)

	大學102學年度碩士班招生考試試題 共 2頁,第2頁
系所組別:化學工程學系乙組	
考試科目:物理化學	考試日期:0223,節次:3
Given: Langmuir isotherm is expr	ressed as $\frac{v}{v_m} = \frac{KP}{1 + KP}$, in which v_m and K are parameters of the equation. The
symbol, v _m , represents the volume	of nitrogen required to form a monolayer on mica.
5. For the first-order parallel reactions	(15%)
Reaction 1: $A \xrightarrow{k_1} B$	
$\Delta G = 0$	-100 + 0.01T kJ mol ⁻¹ , k ₁ = 10 ¹³ exp(-500/T) s ⁻¹
Reaction 2: $A \xrightarrow{k_2} C$	
$\Delta G = -$	-1000 + T kJ mol ⁻¹ , k ₂ = 10 ¹⁵ exp(-1000/T) s ⁻¹
(a) At 500 K, is the rate of reaction	2 faster than that of reaction 1 ?
(b) At 1000 K, is the species B therr	nodynamically stable than C ?
(c) At room temperature, is the spe	ecies B thermodynamically stable than C ?
(d) Calculate the entropy changes f	for reactions 1 and 2, respectively.
(e) What is the value of selectivity	defined as the rate ratio of B to C) at 1000 K ?
6. Ethanol and methanol form very ne	early ideal solutions. At 20°C, the vapor pressure of ethanol is 5.93 kPa, and that
of methanol is 11.83 kPa. (a) Calcu	late the Gibbs energy change when mixing 1 mole of methanol and 2 moles of
ethanol into a solution. (b) Calculat	te the partial pressures and the total vapor pressure of the solution. (c) Calculate
the mole fraction of methanol in th	e vapor. (12%)
7. The mechanism for the reaction 2N	$_{2}O_{5} = 4 NO_{2} + O_{2}$ is
$N_2O_5 \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} NO_2 + NO_3$	
$NO_2 + NO_3 \xrightarrow{k_3} NO + O_2 + NO_3$	D_2
$NO + NO_3 \xrightarrow{k_4} 2 NO_2$	
(a) Derive the rate law using the st	eady-state approximation to show that the reaction is first-order with respect to
N ₂ O ₅ .	(10%)
(b) Assuming that $k \ll k$ express t	he pre-exponential factor A and F. for the apparent second-order rate constant in

(b) Assuming that $k_3 \ll k_2$, express the pre-exponential factor A and E_a for the apparent second-order rate constant in terms of A_1 , A_2 and A_3 and E_{a1} , E_{a2} , and E_{a3} for the three steps. (5%)