系所組別：化學工程學系乙組
考試科目：物理化學
※ 考生請注意：本試題可使用計算機
1．For one mole of a van der Waals gas，$\left(P+\frac{a}{V_{m}^{2}}\right)\left(V_{m}-b\right)=R T$ ，at temperature T is expanded reversibly and isothermally from a volume V_{1} to a volume $V_{2 \text { ．}}$（a）Show that the reversible work is $w_{r e v}=-R T \ln \frac{V_{2}-b}{V_{1}-b}+a\left(\frac{1}{V_{1}}-\frac{1}{V_{2}}\right.$ ，， ， and the internal energy change is $\Delta U_{m}=a\left(\frac{1}{V_{1}}-\frac{1}{V_{2}}\right)$ ．（10\％）（b）If the gas expands isothermally into an evacuated vessel so that the volume changes from V_{1} to V_{2} ，calculate w, q ，and ΔU_{m} ．

2．One mole of supercooled water at $-15^{\circ} \mathrm{C}$ and 1 atm pressure turns into ice．Calculate the entropy change in the system and in the surroundings and the total entropy change．
（13\％）

Given：$C_{P}($ water $)=75.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, C_{P}($ ice $)=37.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \Delta_{f u s} H^{\rho}=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
3．At $25.0^{\circ} \mathrm{C}$ the equilibrium constant K_{p} for the reaction

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

is 1.00×10^{-5} ，and $\Delta 5^{\circ}$ is $41.8 \mathrm{~J} \mathrm{k}^{-1} \mathrm{~mol}^{-1}$ ．
（a）Calculate ΔG° and ΔH° at $25.0^{\circ} \mathrm{C}$ ．
（b）Suppose that 1 mol of CO and 2 mol of $\mathrm{H}_{2} \mathrm{O}$ are introduced into a $10-\mathrm{dm}^{3}$ vessel at $25.0^{\circ} \mathrm{C}$ ．What are the moles of $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ ，and H_{2} at equilibrium？
（c）What would be the effect on the equilibrium of adding N_{2} to the reaction mixture in a closed stainless steel vessel ？
（d）What would be the shift of equilibrium when the temperature is increased ？

4．The following data were measured for the adsorption of nitrogen on mica at $20^{\circ} \mathrm{C}$ ：

	2.8	4.0	6.0	9.4	17.1	33.5
$v / \mathrm{mm}^{3}\left(20^{\circ} \mathrm{C}\right.$ and 1 atm$)$	12.0	15.1	19.0	23.9	28.2	33.0

（a）Draw a plot to show that the data are consistent with the Langmuir isotherm and calculate the values of v_{m} and K ． （9\％）
（b）Calculate the effective surface area of mica if each nitrogen molecule occupies $16.2 \times 10^{-20} \mathrm{~m}^{2}$ ． （6\％）

Given：Langmuir isotherm is expressed as $\frac{v}{v_{m}}=\frac{K P}{1+K P}$ ，in which v_{m} and K are parameters of the equation．The symbol，v_{m} ，represents the volume of nitrogen required to form a monolayer on mica．

5．For the first－order parallel reactions

Reaction 1：$A \xrightarrow{k_{1}} B$

$$
\Delta G=-100+0.01 \mathrm{~T} \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{k}_{1}=10^{13} \exp (-500 / \mathrm{T}) \mathrm{s}^{-1}
$$

Reaction 2：$A \xrightarrow{k_{2}} C$

$$
\Delta G=-1000+\mathrm{TkJ} \mathrm{~mol}^{-1}, \mathrm{k}_{2}=10^{15} \exp (-1000 / \mathrm{T}) \mathrm{s}^{-1}
$$

（a）At 500 K ，is the rate of reaction 2 faster than that of reaction 1 ？
（b）At 1000 K ，is the species B thermodynamically stable than C ？
（c）At room temperature，is the species B thermodynamically stable than C ？
（d）Calculate the entropy changes for reactions 1 and 2，respectively．
（e）What is the value of selectivity（defined as the rate ratio of B to C ）at 1000 K ？

6．Ethanol and methanol form very nearly ideal solutions．At $20^{\circ} \mathrm{C}$ ，the vapor pressure of ethanol is 5.93 kPa ，and that of methanol is 11.83 kPa ．（a）Calculate the Gibbs energy change when mixing 1 mole of methanol and 2 moles of ethanol into a solution．（b）Calculate the partial pressures and the total vapor pressure of the solution．（c）Calculate the mole fraction of methanol in the vapor．

7．The mechanism for the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}=4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ is

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{5} \underset{k_{2}}{\stackrel{k_{1}}{\Leftrightarrow}} \mathrm{NO}_{2}+\mathrm{NO}_{3} \\
& \mathrm{NO}_{2}+\mathrm{NO}_{3} \xrightarrow{k_{3}} \mathrm{NO}+\mathrm{O}_{2}+\mathrm{NO}_{2} \\
& \mathrm{NO}+\mathrm{NO}_{3} \xrightarrow{k_{3}} 2 \mathrm{NO}_{2}
\end{aligned}
$$

（a）Derive the rate law using the steady－state approximation to show that the reaction is first－order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$. （10\％）
（b）Assuming that $k_{3} \ll k_{2}$ ，express the pre－exponential factor A and E_{a} for the apparent second－order rate constant in terms of $A_{\nu} A_{2}$ and A_{3} and $E_{a 1}, E_{a 2}$ and E_{03} for the three steps．

