1．［10\％］
Please show that the enthalpy of an ideal gas is dependent of temperature only．

2．［10\％］
Water at $25^{\circ} \mathrm{C}$ flows in a horizontal pipe in which there is no exchange of either heat or work with surroundings．Its velocity is $14 \mathrm{~m} / \mathrm{s}$ in a pipe with an internal diameter of 6 cm until it flows into a section where the pipe diameter abruptly increases．What is the maximum temperature change for an enlargement in the pipe？

3．$[15 \%]$

One mole of an ideal diatomic gas is compressed adiabatically in a piston／cylinder device from 2 bar and $25^{\circ} \mathrm{C}$ to 7 bar．The process is irreversible and requires 35% more work than a reversible，adiabatic compression from the same initial state to the same final pressure．
（1）What is the constant－volume heat capacity of this ideal diatomic gas？［3\％］
（2）What is the entropy change of the gas，in unit of $\mathrm{J} /(\mathrm{mol} \mathrm{K})$ ？$[\mathbf{1 2 \%}]$

4．［15\％］

The idealization of the gas－turbine engine is called the Brayton cycle．The working fluid of an ideal Brayton cycle is taken as air，often considered as an ideal gas with constant heat capacities．The ideal Brayton cycle follows the following four distinct processes：

Process $\mathbf{A} \rightarrow \mathbf{B}$ ：air is reversibly and adiabatically compressed from $\boldsymbol{P}_{\boldsymbol{A}}$ to $\boldsymbol{P}_{\boldsymbol{B}}$ ．
Process $B \rightarrow C$ ：heat $Q_{B C}$ ，replacing combustion，is added at constant pressure，raising the air temperature．
Process $\mathbf{C} \rightarrow \mathbf{D}$ ：a work－producing isentropic expansion of the air reduces the pressure from P_{C} to P_{D}.
Process $\mathbf{D} \rightarrow \mathbf{A}$ ：air is cooled at constant pressure．
（1）Please sketch the ideal Brayton cycle on a $P V$ diagram and clearly label these four processes mentioned above．［3\％］
（2）What is the thermal efficiency of the ideal Brayton cycle，in relation to the pressure of the air？［12\％］

系所組別：化學工程學系甲組
考試科目：化工熱力學
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

5．$[12 \%]$

Please draw the same plot like the left figure on your exam paper，choosing an arbitrary point from the plot（the curve），plot and indicate the following items．［12\％］

$$
\bar{M}_{1}, \bar{M}_{2}, \bar{M}_{1}^{\infty}, \text { and } \bar{M}_{2}^{\infty}
$$

6．［20\％］
If $G^{E} / x_{1} x_{2} R T=A_{21} x_{1}+A_{12} x_{2}$ ，please derive from this expression to obtain the expression for $\ln \gamma_{1}$ and $\ln \gamma_{2}$ ，also the values of γ_{1}^{∞} and $\gamma_{2}^{\infty} .[\mathbf{1 2 + 8}=\mathbf{2 0 \%}]$

7．［18\％］

The excess Gibbs energy for a liquid mixture of species 1,2 at certain fixed T and P is represented by

$$
H^{E}=x_{1} x_{2} \cdot\left(20 x_{1}+10 x_{2}\right)
$$

where H^{E} is in $\mathrm{J} \cdot \mathrm{mol}^{-1}$ ．Determine the expression for \bar{H}_{1}^{E} and \bar{H}_{2}^{E} as functions of x_{1} ．Also if

$$
H=10 \cdot\left(2 x_{1}+x_{2}\right) \cdot\left(10+x_{1} x_{2}\right)
$$

Then，please determine the expression for the heat of mixing as function of x_{2} ．

