編號: 83	國立成功大學 103	學年度碩士班招生考試試題	共1頁,第1頁
系所組別:	化學工程學系乙組		
考試科目:	無機化學及分析化學		考試日期:0222,節次:2
※ 考生請	注意:本試題可使用計算機。	請於答案卷(卡)作答,於本試	題紙上作答者,不予計分。

Inorganic Chemistry (50 points)

- (1) (a) Does the integral $\int (3d_z^2)x(3dxy)d\tau$ vanish in a tetrahedral molecule? Explain. (5 points)
 - (b) Does the integral $\int (2p_x)(2p_y)(2p_z)d\tau$ necessarily vanish in an octahedral environment? Explain. (5 points)
- (2) Consider the $C_{2\nu}$ molecule NO₂. The combination $p_x(A)$ - $p_x(B)$ of the two O atoms (with x perpendicular to the plane) spans A₂. Is there any orbital of the central N atom that can have a non-zero overlap with that combination of O orbitals? What would be the case in SO₂, where 3*d* orbitals might be available? (20 points)
- (3) Explain how the facts that $(\eta^6-C_6H_5CO_2H)Cr(CO)_3$ is a stronger acid than benzoic acid and that $(\eta^6-C_6H_5NH_2)Cr(CO)_3$ is a weaker base than aniline show that the $Cr(CO)_3$ group withdraws electrons from the aromatic ring. (10 points)
- (4) HNi[P(OEt)₃]₄⁺ is known to be a catalyst for olefin isomerization. Write a catalytic cycle for isomerization of 1-butene catalyzed by this species. Keep in mind the 16- and 18-electron rule. How would you formulate in the most reasonable way the electronic structure of the Ni cation? (10 points)

Analytical Chemistry (50 points)

(5) A 4.476-g sample of a petroleum product was burned in a tube furnace, and the produced SO₂ was collected in 3% H₂O₂. Reaction:

 $SO_2(g) + H_2O_2 \rightarrow H_2SO_4$

A 25.00-mL portion of 0.00923M NaOH was introduced into the solution of H_2SO_4 , following which the excess based was back-titrated with 13.33 mL of 0.01007 M HCl. Calculate the parts per million of sulfur in the sample. (15 points)

- (6) Calculate pH change when 0.05 M CH₃COONa (with $Ka = 1.75 \times 10^{-5}$) is diluted with water by ten folds. (15 points)
- (7) The KClO₃ in 0.1342-g sample of an explosive was determined by reaction with 50.00 mL of 0.09601 M Fe⁺²:

 $ClO_3^- + 6Fe^{2+} + 6H^+ \rightarrow Cl^- + 3H_2O + 6Fe^{3+}$

When the reaction was complete, the excess Fe^{+2} was back-titrated with 12.99 mL of 0.08362 M Ce⁺⁴. Calculate the percentage of KClO₃ in the sample. (20 points)