*	考生請注意:本試題可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
1.	Answer the following questions: (22%) (a) Explain the supersaturation phenomenon in the condensation process according to the Kelvin equation.
	 (4%) (b) The solubility of AgCl in water at 25°C is 1.274×10⁻⁵ mol dm⁻³. Calculate the solubility of AgCl in a mixed solution of 0.01M Mg(NO₃)₂ and 0.01M Al(NO₃)₃ according to the Debye-Hückel Limiting Law. (6%)
	 (c) Is fractional crystallization more difficult than fractional distillation in practical application? Why? (4%) (d) How to break the azeotrope? (4%) (e) A lower consolute temperature was observed for the water-triethylamine system. Explain the temperature effect on the solubility. (4%)
2.	Judge the following statements are correct (O) or incorrect (\times): (15%) (a) For a cyclic process containing some irreversible processes, $\Delta S > 0$. (3%)
	(b) The addition of nitrogen gas into a closed vessel containing water will suppress the vapor pressure of water. (3%)
	 (c) According to the 3rd law of thermodynamics, the entropies of all species are equal to zero. (3%) (d) For an ideal solution, the interactions among all molecules are negligible. (3%) (e) For the expansion of a gas, the work done on the surroundings via an irreversible process is lower than that via a reversible process. The lost work will convert into heat and lead to the increase of system temperature. (3%)
3.	The boiling point of benzene is 80.1°C at 1 atm. (a) Estimate the enthalpy of vaporization of benzene according to Trouton's rule (5%); (b) Estimate the vapor pressure of benzene at 25°C according to Clausius-Clapeyron equation, assuming the enthalpy of vaporization remains constant at 25-80.1°C. (7%) (12%)
4.	The standard Gibbs energies of formation ($\Delta_f G^\circ$) for Cu ²⁺ and Zn ²⁺ ions at 25°C and 1 bar are 65.49 and
	-147.06 kJ/mol, respectively. (a) Calculate the $\Delta_r G^\circ$ of the reaction $Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$ (5%); (b) Construct an electrochemical cell based on the above reaction to convert the chemical energy into electric energy. Illustrate its configuration (indicating the positive and negative electrodes) (5%) and calculate its standard electromotive force (3%). (13%)

(背面仍有題目,請繼續作答)

共 2 頁,第1頁

國立成功大學 103 學年度碩士班招生考試試題

系所組別:化學工程學系乙組

考試科目:物理化學

編號: 84

考試日期:0222,節次:3

國立成功大學 103 學年度碩士班招生考試試題 編號: 84 共 2 頁,第2頁 <u>系所組別:化學工程學系乙組</u> 考試科目:物理化學 考試日期:0222,節次:3 ※考生請注意:本試題可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 5. Joule-Thomson coefficient is defined as $\mu_{\rm JT} = (\partial T / \partial P)_{\rm H}$, show that (a) $\mu_{\text{JT}} = \frac{T(\frac{\partial V_m}{\partial T})_P - V_m}{C_{P_m}}$ (i.e., V_m : molar volume, $C_{p,m}$: molar heat capacity at constant P) (6%) (b) for a van der Waals gas, $\mu_{JT} \approx \frac{(2a/_{RT}) - b}{C_{P}}$ (7%) (c) Assuming N₂ gas is a van der Waals gas (i.e., a=0.1408 Pa m⁶ mol⁻², $b=0.0391\times10^{-3}$ m³ mol⁻¹), estimate ΔH for the isothermal compression of 1.0 mole of N₂ gas at 300 K from 10 bar to 1 bar. (7%) (20%) $A \xrightarrow{k_1} 2B$ and $A \xrightarrow{k_2} C$ 6. Consider first order parallel reactions The initial concentration of A is [A]₀. Neither B or C are present initially. (a) Derive the expressions for the variations of [A] and [B] with time. (6%) (b) $[A]_0=0.12 \mod dm^{-3}$, $k_1 = 100 \ s^{-1}$, and $k_2 = 50 \ s^{-1}$. Calculate the half-life of A (3%) and the final concentration ratio of B to C. (3%). (c) Derive the expression of the activation energy E for the disappearance of A in terms of k_1 , k_2 , and the activation energies E_1 and E_2 for the two paths (6%) (18%)