編號: 86

國立成功大學 105 學年度碩士班招生考試試題

系 所:化學工程學系

考試科目:物理化學

考試日期:0227,節次:3

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. Answer each of the following questions with Y (Yes) or N (No). (14%)
 - (a) The internal energy of an isolated system is constant whether it undergoes a reversible or an irreversible process.
 - (b) The entropy is conservative for any cyclic process whether it undergoes a reversible or an irreversible process.
 - (c) Most substances contract on freezing, and for them the slope for the melting line is positive.
 - (d) The dissolution of sodium chloride in water always causes an increase in entropy.
 - (e) In a dilute solution, the activity coefficient of an ion species is increased with increasing the ionic strength.
 - (f) The activation energy of a reaction is always positive.
 - (g) Due to mixing, a simple gas reaction never goes to completion.
- 2. Two moles of a monatomic ideal gas is expanded isothermally and reversibly at 25 °C from 5 to 1 bar. Calculate q, w, ΔH , ΔU , ΔG , ΔA , and ΔS for the gas. (14%)
- 3. The following thermodynamic data apply to the complete oxidation of butane at 25 °C.

$$C_4H_{10}(g) + 13/2O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$$
 $\Delta H^0 = -2877 \text{ kJ mol}^{-1}$ $\Delta S^0 = -432.7 \text{ J K}^{-1} \text{ mol}^{-1}$

Suppose that a completely efficient fuel cell could be set up utilizing this reaction. Calculate (a) the maximum electrical work and (b) the standard emf of the cell. (14%)

4. Oxygen at pressures that are not too high obeys the van der Waals' equation

$$\left(P+\frac{a}{V_m^2}\right)(V_m-b)=RT.$$

The constants a and b are 0.1378 Pa m⁶ mol⁻¹, and 0.0318 x 10^{-3} m³ mol⁻¹, respectively.

(a) Show that the fugacity f can be expressed as $f = P \exp\left[\frac{P}{RT}(b - \frac{a}{RT})\right]$ starting from

$$RT \ln \frac{f}{P} = \int_0^P (V_m - \frac{RT}{P}) dP. \quad (8\%)$$

(b) Calculate ΔG at 25°C if the pressure is raised from 1 bar to 5 bar. (6%)

國立成功大學 105 學年度碩士班招生考試試題

編號: 86

所: 化學工程學系

考試科目:物理化學

考試日期:0227,節次:3

第2頁,共2頁

5. The standard Gibbs energy of formation of NO₂ and N₂O₄ are 51.31 and 97.89 kJ mol⁻¹, respectively, at 298.15 K. For the reaction N₂O₄(g) = 2NO₂(g), calculate the equilibrium constant K_P and Gibbs energy change ΔG° . If only one mole of NO₂ exists in the reaction system initially, and the total pressure is 2 bar, what is the extent of reaction in equilibrium? (15%)

6. The reaction 2NO + $O_2 \rightarrow 2NO_2$ is believed to occur by the mechanism:

$$2NO \xrightarrow{k_1} N_2O_2$$

$$N_2O_2 \xrightarrow{k_{-1}} 2NO$$

$$N_2O_2 + O_2 \xrightarrow{k_2} 2NO_2$$

Assume N_2O_2 to be in a steady state and derive the rate equation. Under what conditions does the rate equation reduce to second-order kinetics in NO and first-order kinetics in O_2 ? (15%)

7. For the parallel reversible first-order reactions

$$C \xrightarrow{k_2} A \xrightarrow{k_1} B$$
, $[A] = [A]_0$, and $[B] = [C] = 0$ at $t = 0$.

The equilibrium constants for the formation of B and C from A are given by

$$K_1 = \frac{k_1}{k_{-1}}$$
 and $K_2 = \frac{k_2}{k_{-2}}$.

- (a) Derive the equilibrium concentrations of A, B, and C. (6%)
- (b) If $k_1 = 1$, $k_{-1} = 0.01$, $k_2 = 0.1$, and $k_{-2} = 0.0005$ s⁻¹, show that B is formed initially 10 times faster than C(i.e., [B] = 10[C]) and, C is twice of B(i.e., [C] = 2[B]) at infinite time. (8%)