編號: 86

國立成功大學 106 學年度碩士班招生考試試題

系 所: 化學工程學系

考試科目:物理化學

第1頁,共2頁

考試日期:0213, 節次:3

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Judge the following statements are correct (O) or incorrect (X): (15%)
 - (a) $\Delta S=0$ is always impossible for all irreversible processes (3%)
 - (b) The spontaneous occurrence is impossible for a process with $\triangle H>0$ at constant T and P. (3%)
 - (c) For a real gas, the temperature always decreases after adiabatic expansion. (3%)
 - (d) For a binary solution, phase separation occurs only when positive deviation is large enough. (3%)
 - (e) An ion with larger surface charge density has larger thickness of ionic atmosphere. (3%)
- 2. Answer the following questions:

(24%)

- (a) For the adiabatic expansion of an ideal gas through a Joule-Thomson expansion, which of the quantities ΔU , ΔH , ΔS , ΔA , ΔG , q and w are equal to zero? (4%)
- (b) Explain the physically meanings of the terms $\frac{RT}{V_m b}$ and $\frac{a}{V_m^2}$ for the van der Waals gas. (4%)
- (c) Explain what is Nernst potential (4%)
- (d) Transition-state theory is theoretically superior to the kinetic theory. Why? (4%)
- (e) Illustrate the fixed electric double layer and state what is zeta potential (4%)
- (f) Determine the number of degrees of freedom and suggest the required variables for the "bubble point surface". (4%)
- 3. A mole of nitrogen gas at 300 K and 10 bar is considered as an ideal gas.
 - (a) Calculate the work done while expanding to 1 bar reversibly and adiabatically (5%);
 - (b) Calculate the work done while expanding to 1 bar adiabatically against a constant pressure of 1 bar (5%);
 - (c) Calculate the work while heating to 400 K at a constant pressure of 10 bar (5%)
 - (d) Calculate ΔH_m while expanding to 1 bar adiabatically against a vacuum (3%). (18%)
- 4. The boiling point of water at 1 atm is 100°C. The molar volume of liquid water (18.78 cm³/mol) and the heat of vaporization (about 125 J/mol) are considered to be unchanged in the ranges of temperature and pressure examined. (a) Estimate the boiling point of water at 0.92 atm according to the Clausius-Clapeyron equation. (5%) (b) Estimate the vapor pressure of water in a closed vessel at 100°C when N₂ gas is added until the total pressure is 20 atm if the vapor considered as an ideal gas. (5%) (10%)

編號: 86

國立成功大學 106 學年度碩士班招生考試試題

系 所: 化學工程學系

考試科目:物理化學

第2頁,共2頁

考試日期:0213,節次:3

5. The following data relate to the adsorption of nitrogen at 77 K on a 1.00-g sample of silica gel:

Pressure / kPa

10 50

Volume / cm³ (0°C, 1atm)

150 250

At 77 K the saturation vapor pressure P_0 of nitrogen is 101.3 kPa. (a) Determine the equilibrium constant K and the volume required to form a monolayer V_0 , according to the simplified BET equation

 $(\frac{PP_0}{V(P_0-P)} = \frac{1}{V_0K} + \frac{P}{V_0})$. (5%) (b) Estimate the surface area of the gel, taking the molecular area of nitrogen to be $1.62 \times 10^{-19} \ m^2$. (5%)

6. (a) For a first-order decomposition reaction in an aqueous medium, the rate constants are 450 and 700 min⁻¹ at 290 and 310 K, respectively. Calculate the activation energy and preexponential factor according to the Arrhenius law. (8%)

(b) At 298K, the equilibrium constant for the reaction $CO(g) + H_2O(g) \Leftrightarrow CO_2(g) + H_2(g)$ is 1.0×10^{-5} and ΔS^0 is 41.8 J K⁻¹ mol⁻¹. Calculate ΔG^0 and ΔH^0 at 298 K. (6%)

(c) For HCl at infinite dilution, the molar conductivities of H^+ and Cl^- ions at 25°C are 349.8 and 76.3 $S cm^2mol^{-1}$, respectively. Calculate the transport number, mobility, and the speed under a potential gradient of 100 $V cm^{-1}$ for H^+ ions. (9%)