系 所：化學工程學系
考試科目：化工熱力學
考試日期：0205，節次：2
第1頁，共2頁
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

Problem 1 （ $8: \%$ ）

Answer False（F）or true（T）．For those＂false＂，you MUST justify your answer．If the answer is incorrect，the problem is considered wrong（gain zero score）．（4\％each）
（1）$Q=n \Delta H$ comes merely from the result of a constant－pressure closed system（homogenous，no chemical reaction，and static（no move）are surely the assumptions as well）
（2）A Joule－Thomson process is a type of isenthalpic process where a liquid or a gas is cooled as it passes from a lower pressure state to a higher pressure state．

Problem 2 （14\％）
For a polytropic process $P V^{\delta}=$ constant，as you already know that

$$
\begin{equation*}
Q=\frac{(\delta-\gamma) \cdot R T_{1}}{(\delta-1)(\gamma-1)} \cdot\left[\left(\frac{P_{2}}{P_{1}}\right)^{(\delta-1) / \delta}-1\right] \tag{1}
\end{equation*}
$$

For an ideal gas undergoes reversible and constant V（isothermal）process，we can get to the result of $Q=\Delta U=C_{v} \cdot \Delta T\left(=C_{v} \cdot\left(T_{2}-T_{1}\right)\right.$ Eq．（2）．Please derive from Eq．（1）to get to the result of Eq．（2）．
［Note］Besides of the two equations as above，you would need，both the equations of ideal gas and polytropics．

Problem 3 （20\％）

What is the final temperature when heat in the amount of $1.0 \times 10^{5} \mathrm{Btu}$ is added to 10 lbmol of ammonia initially at $300^{\circ} \mathrm{F}$ ．in a steady－flow process at 1 atm ？The coefficients of the ideal－gas heat capacity of ammonia are listed：$A=3.60 ; \quad B \cdot 10^{3}=3.02 ; \quad C=0.0 ; \quad D \cdot 10^{-5}=-0.16$
［Note］Please proceed the calculation FIVE times EXACTLY by using the initial guess of $750^{\circ} \mathrm{F}$ for the final temperature．

Problem 4 （8\％）

One method for the manufacture of＂synthesis gas＂（primarily a mixture of CO and H_{2} ）is the catalytic reforming of CH_{4} with steam at high temperature and atmospheric pressure：

The major reaction for the reforming of CH_{4} with steam is

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{Eq}(\mathrm{~A})
$$

The only other reaction which occurs to an appreciable extent is the water－gas－shift reaction：

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{Eq}(\mathrm{~B})
$$

The reactants are supplied in the ratio of 2.5 －mole steam to 2.0 －mole CH_{4} ．It is assumed that CH_{4} is completely converted and the product stream contains $20 \mathrm{~mol} \% \mathrm{CO}$ ．
Please use the above two reactions to calculate and obtain the amounts（in moles）of all species in the product stream．

系 所：化學工程學系
考試科目：化工熱力學

Problem 5 （15\％）

If the excess Gibbs energy of a binary liquid system，G^{E} ，is expressed as a function of the mole fractions of the components as $\frac{G^{B}}{R T}=A x_{1} x_{2}$（ A ：a constant）．
（1）What is the range of A ，if these two liquids form two coexisting liquid phases？（7\％）
（2）If $\boldsymbol{A}=\mathbf{2 . 5}$ ，what is the composition range of species 1 leading to the observation of two coexisting liquid phases in this system？（8\％）

Problem 6 （20\％）

A thermodynamic power cycle consists of four sequential thermodynamic processes described as follows：
Process 1：Isentropic compression from state \mathbf{A} to state \mathbf{B} ．
Process 2：Isobaric heating from state \mathbf{B} to state \mathbf{C} ．
Process 3：Isentropic expansion from state \mathbf{C} to state \mathbf{D} ．
Process 4：Isochoric cooling（constant－volume）from state \mathbf{D} to state \mathbf{A} ．
（1）Please sketch this cycle on a \boldsymbol{P}－V diagram．（5\％）
（2）If air is the working fluid of this power cycle and can be regarded as an ideal gas，please estimate the thermal efficiency (η) of this air－standard power cycle．Please express the thermal efficiency (η) in terms of $\boldsymbol{\gamma}=C_{P} / C_{V}$ ，the compression ratio $\left(r=V_{A} / V_{B}\right)$ ，the expansion ratio（ $k=V_{D} / V_{C}$ ），and other proper thermodynamic variables．（15\％）

Problem 7 （15\％）

A binary system of species 1 and 2 consists of vapor and liquid phases in equilibrium at temperature \boldsymbol{T} ．The overall mole fraction of species 1 is $z_{1}=\mathbf{0 . 6 5}$ ．At temperature \boldsymbol{T} ，the activity coefficients and the vapor pressures of species 1 and 2 are given as below：

$$
\begin{aligned}
& \ln \left(\gamma_{1}\right)=0.67 x_{2}^{2} \text { and } \ln \left(\gamma_{2}\right)=0.67 x_{1}^{2}, \text { and } \\
& P_{1}{ }^{s a t}=32.27 \mathrm{kPa} \text { and } P_{2}{ }^{\text {sat }}=73.14 \mathrm{kPa} .
\end{aligned}
$$

（1）Over what range of pressures can this binary system exist as coexisting liquid and vapor phases at the given T and z_{1} ？（10\％）
（2）For a liquid phase mole fraction $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0 . 7 5}$ ，what is the pressure \boldsymbol{P} of the system？（5\％）

