編號: 84

國立成功大學 107 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0205,節次:3

第1頁,共3頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 Multiple-Choice Question (Q1-Q3) with Single Answer (單選題): (9%)

1. What assumptions were made in the derivation of design equation for batch reactor:

(3%)

- (a) open system
- (b) constant volume
- (c) constant temperature
- (d) steady state
- (e) all above correct
- 2. What assumptions were made in the derivation of design equation for CSTR:

(3%)

- (a) non-steady state
- (b) No radial variation in reaction rate of the system
- (c) No spatial variation in concentration of the system
- (d) No radial variation in pressure of the system
- (e) all above wrong
- 3. An irreversible, liquid-phase or gas phase, second order reaction, A → B, proceeds to 50% conversion in the PFR operating isothermally, isobarically and at steady state. What conversion would be obtained if the PFR operated at half the original pressure? (3%)
 - (a) > 50% for liquid and gas phase
 - (b) < 50% for liquid and gas phase
 - (c) = 50% for gas phase and >50% for liquid phase
 - (d) = 50% for liquid phase and < 50% for gas phase
 - (e) > 50% for liquid phase and < 50% for gas phase
- 4. The reaction $2A + B \Rightarrow 2C$ is irreversible. At 50°C the specific rate constant is 10 (mol/dm³)² s⁻¹ with an activation energy 500 J/mol. What is the rate of reaction at 100°C when the concentrations of A and B are 3 and 1.5 mol/dm³ when the rate law for the reaction is: (10%)
 - (A) second order in A and overall third order;
 - (B) second order in B and overall third order.
- 5. Nitric oxide is produced by the gas-phase oxidation of ammonia as:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

The rate equation is followed by $-r_A = k \, [NH_3] \, [\dot{O}_2]^{1/2}$. The feed consists of 15% ammonia in air at 9 atm and 276°C. The kinetic constant k is 0.1 $(dm^3/mol)^{1/2}$ and flow rate v_0 is 2 dm³/s. Calculate the reactor volume necessary to achieve 65% conversion in CSTR. (15%)

編號: 84

國立成功大學 107 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0205,節次:3

第2頁,共3頁

6. Please answer the followings:

(10%)

- (a) Draw the four stages of cell growth as a function of time and give explanation for what happen at each stage.
- (b) For an exothermic, reversible reaction in an adiabatic reactor, please sketch the profiles of equilibrium conversion and conversion calculated based on energy balance as functions of temperature.
- (c) Using the graphical solution provided above, how to increase the conversion, which is limited by the thermodynamics, at the outlet of reactor. Any strategy? Please explain.
- (d) Please draw the temperature as a function of time of an Advanced Reaction System Screening Tool (ARSST) system. Please explain the temperature trajectory you provided in detail.
- 7. The reaction A + B => C was conducted in a CSTR with a volume of 20 m³. The feed is at 295 K, containing propylene oxide (A), water (B), and methanol (M), each at a flow rate of 91 mol h⁻¹. The product (C) is propylene glycol and methanol is inert. The volumetric flow rate to the reactor is 25 m³ h⁻¹. The heat capacities in J mol⁻¹ K⁻¹ are C_{PA} = 146, C_{PB} = 75, C_{PC} = 192, and C_{PM} = 79.

The reaction is first order in A, zero order in B, $k = 6.9 \times 10^{10} \exp(-75000/(R \text{ T})) \text{ h}^{-1}$, where the activation energy is in unit of J mol⁻¹. The heat of reaction is -56800 J mol⁻¹. The CSTR is surrounded by a cooling jacket and the heat transfer coefficient times the heat transfer area is 1 x 10⁴ J h⁻¹ K⁻¹. The cooling water temperature is assumed constant at 305 K. What is the unstable steady-state operating temperature and conversion in the range of 298 to 438 K? (23%)

8. Methyl ethyl ketone (MEK) is an important industrial solvent that can be produced from the dehydrogenation of butan-2-ol (Bu) over a zinc oxide catalyst:

 $Bu \rightarrow MEK + H_2$

The following data giving the reaction rate for MEK were obtained in a differential reactor at 490°C.

Data Set	1	2	3	4	5	6
P _{Bu} (atm)	2	0.1	0.5	1	2	1
P _{MEK} (atm)	5	0	2	1	0	0
$P_{\rm H2}$ (atm)	0	0	1	1	0	10
r' _{MEK}	0.44	0.040	0,069	0.060	0.044	0.059
(mol/h-gcat)						

(a) Suggest a rate law consistent with the experimental data.

(10%)

(b) Suggest a reaction mechanism and rate-limiting step consistent with the rate law. (8%)

編號: 84

國立成功大學 107 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0205,節次:3

第3頁,共3頁

9. The following externally mass transfer-limited reaction was carried out in a packed-bed reactor. (15%)

$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

Please show that the conversion is

$$\ln \frac{1}{1-X} = \frac{k_c a_c}{U} L$$

where U is the superficial molar average velocity through the bed; L is the reactor length.

Figure. Packed-bed reactor.