編號: 79

國立成功大學 108 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0223, 節次:3

第1頁,共3頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1 The liquid-phase reaction, $A + B \rightarrow C$, follows an elementary rate law with k = 0.05 liter/mol/min at 300 K and E = 10 kcal/mol (R = 1.987 cal/mol/K). The concentrations of the A and B feed streams are 4 M with volumetric flow rate of 5 liter/min each. These two feed streams are mixed thoroughly before entering reactor. To achieve 90% of conversion, please estimate the volume of reactor for (20%)
 - (a) an ideal plug flow reactor operated isothermally at 300 K; (5%)
 - (b) an ideal continuous-stirred tank reactor operated isothermally at 300 K; (5%)
 - (c) an ideal continuous-stirred tank reactor operated isothermally at 350 K. (5%)
 - (d) Please compare answers in (a) \sim (c) and comment the effects of mixing condition in reactor and temperature on reaction rate. (5%)
- 2 The elementary and reversible reaction, $A+B \leftrightarrow C+D+E$, is carried out in a semibatch reactor in liquid phase isothermally at 300 K (k=5 liter/mol/hr, $K_C=3$ mol/liter). Pure A ($C_{A0}=2$ M; $v_0=0.5$ liter/min) enters the reactor containing of B ($V_0=2000$ liters; $C_{B0}=1$ M). Assume constant density for the solution. (15%)
 - (a) List all the equations required for calculating the reaction rates, concentrations of all species, and conversion of A as a function of reaction time. (10%)
 - (b) Please qualitatively estimate the change of the concentrations of A, B and C with reaction time in this semibatch reactor. (5%)
- 3 · Below shows the Lineweaver-Burk plot for competitive inhibition of an enzymatic reaction. r_P is the production rate of product and C_S is the concentration of substrate. (15%)

編號: 79 國立成功大學 108 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0223, 節次:3

第2頁,共3頁

Please solve this problem by following the steps:

- (a) Propose the mechanism of competitive inhibition between substrate (S) and inhibitor (I). (5%)
- (b) Derive the production rate of product (P). (5%)
- (c) Explain whether line (A) or (B) is more likely to be the trend of no inhibition. (5%)
- 4 · The reaction A + B ⇔ C + D is performed adiabatically in a series of staged packed-bed reactors with inter-stage cooling. The lowest temperature to which the reactant stream may be cooled is 300 K. The feed is equimolar in A and B and the catalyst weight in each reactor is sufficient to achieve 99.9% equilibrium conversion. The feed enters at 300 K and the reaction is performed adiabatically. If three reactors and two coolers are used, what conversion may be achieved? Please explain your answer step-by-step. (20%) Additional information:

$$\Delta H^{o} = -30000 \text{ cal/mol A}; C_{PA} = C_{PB} = C_{PC} = C_{PD} = 25 \text{ cal/g/mol/K};$$
 Ke(323 K) = 500000; F_{A0} = 10 mol A/min

5 • The following data were obtained for the oxidation of CO (2CO + $O_2 \leftrightarrow 2CO_2$) over a catalyst. All rates are initial rates. The CO adsorbed as a molecular adsorption, while the O_2 is via dissociative adsorption. (24%)

Run	-r' _{CO} [mol/dm ³ ·s]	C _{CO} [mol/dm ³]	C _{O2} [mol/dm ³]
1	0.020	0.01	1
2	0.035	0.01	3
3	0.049	0.01	. 6
4	0.060	0.01	9
5	0.196	0.1	1
6	0.384	0.2	1
7	0.902	0.5	1
8	1.653	1	1
9	4.44	5	1
10	5.00	10	1
11	4.44	20	1
12	2.77	50	1

- (a) Suggest a rate law consistent with the data. (10%)
- (b) Suggest reaction mechanisms consistent with the rate law and verify it. (14%)

編號: 79

國立成功大學 108 學年度碩士班招生考試試題

系 所:化學工程學系 考試科曰:化學反應工程

考試日期:0223,節次:3

考試件日・11字以應工任 第3百・413百	7 BV LL W 0225 KI XC 5
第3頁,共3頁 6、For a first-order reaction in spherical particles, if the reac	etion is limited by the internal mass transfer, please
describe and explain how the reaction rate changes	with particle diameter (d _p), velocity (U), and
temperature (T). You should start from the definition of	the internal effectiveness factor, η, to find out the
relationship. (6%)	
1 ()	
	·
	·
•	
·	
	•