國立成功大學 110學年度碩士班招生考試試題

編 號: 79

系 所: 化學工程學系

科 目:物理化學

日 期: 0203

節 次:第3節

備 註: 可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

系 所: 化學工程學系

考試	科目:物理化學 考試日期:0	203,節次:3	
第1頁,共2頁			
* =	考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不	予計分。	
Useful constants:			
F=96485 C mol ⁻¹			
$R = 8.315 \text{ J K}^{-1} \text{ mol}^{-1}$			
1. A	nswer the following questions:	(20%)	
a.	a. A nonideal gas undergoes adiabatic expansion through a throttling valve. Is △H of this process equal to zero		
		(4%)	
b.	Provide the rationale to decide the rate-determining step in a chemical reaction.	(4%)	
c.	Briefly describe the Langmuir adsorption isotherm and provide its assumptions.	(4%)	
d.			
	estimation for the enthalpy of vaporization of some liquids. Please give a potential molecular interpretation of		
	Trouton's rule. Also, name some liquids that do not follow Trouton's rule and explain why such devi	ation occurs.	
		(4%)	
e.	For a system containing ice in a solution of water and alcohol, determine the degree of freedom.	(4%)	
2. A process first maintains water vapor at 100 °C, 1.8 atm, and then condense the vapor into liquid at the same condition.			
Th	the $\Delta_{vap}H$ of water is 40.6 kJ/mol. We can assume the vapor behaves ideally and the liquid water is inc	ompressible.	
	,	(20%)	
a.	Calculate ΔH , ΔS , and ΔG of this process.	(15%)	
b.	Is this process spontaneous?	(5%)	
a. P. to d. C. Houles additional loss			
	erive the following relationships:	(15%)	
a.	The entropy of a perfect gas depends on the volume, $S \propto R \ln(V)$	(7%)	
Ĺ			
b.	221		
	$\left(\frac{\partial C_P}{\partial P}\right)_T = -T\left(\frac{\partial^2 V}{\partial T^2}\right)_P$		
		(8%)	
4. One mole of a gas at 300 K is compressed isothermally from an initial pressure of 1 bar to a final pressure of 50 bar.			
	lculate △H of this process for	(15%)	
a.	Ideal gas	(5%)	
b.	Van der Waals gas	(10%)	
	Equation of states $(B + \frac{a}{b})(V - b) = BT$		
	Equation of state: $\left(P + \frac{a}{V_m^2}\right)(V_m - b) = RT$		

 $a=0.0248 \; Pa \; m^6 \; mol^{-2} \; and \; b=0.0266 \times 10^{-3} \; m^3 \; mol^{-1}$

編號: 79

國立成功大學 110 學年度碩士班招生考試試題

系 所:化學工程學系

考試科目:物理化學

考試日期:0203,節次:3

第2頁,共2頁

Also, for Van der Waals gas, the Joule-Thomson coefficient can be expressed as:

$$\mu = \frac{\frac{2\alpha}{RT} - b}{C_P}$$

An inhibitor, I, decreases the rate of product formation from the substrate by binding to the enzyme. Derive a modified
Michaelis-Menten rate equation by considering the effect of the inhibitor. You may assume the complex EI is at
steady-state. (10%)

$$E+S \xrightarrow{k_1} ES$$

ES
$$\xrightarrow{k_2}$$
 E + Z

$$E+I \stackrel{k_3}{\underset{k_{3}}{\longleftarrow}} EI$$

6. Consider the following cell:

(20%)

 $Zn(s)|ZnCl_2(0.005 \text{ mol kg}^{-1})|Hg_2Cl_2(s)|Hg(l)$

The cell reaction is $Hg_2Cl_2(s)+Zn(s) \rightarrow 2Hg(l)+2Cl^*(aq)+Zn^{2+}(aq)$

- a. Calculate the electromotive force of this cell, neglecting the correction of activity coefficient.
- (5%)
- b. Write the Nernst equation that includes activity coefficients for the cell reaction.
- (5%)
- c. Assuming that the Debye-Hückel limiting law holds at this concentration, calculate the electromotive force again.
 - (5%)

d. Calculate ΔG of this cell, using the electromotive force from part c.

(5%)