國立成功大學和學年度化學等試(中)工程數學試題)第一

1 (10%) Determine the eigenvalues and eigenfunctions of the differential equation

$$x y'' + y' + \lambda x y = 0$$
with
$$y(0) = \text{finite}, \quad y(a) = 0$$

2 The final-value theorem states that

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} s \mathcal{L}\{f(t)\}\$$

 $\lim_{t\to\infty} f(t) = \lim_{s\to 0} s \, \mathcal{L}\{f(t)\}$ where $\mathcal{L}\{f(t)\}$ is the Laplace Transform of f(t).

- (5%) Is the above theorem valid for (i) $\mathcal{L}\{f(t)\} = \frac{1}{s-1}$, (ii) $\mathcal{L}\{f(t)\} = \frac{1}{s+1}$?
- (b) (5%) Give the reason(s) why the final-value theorem fails in some cases. In addition, state the limitation(s) of the theorem.
- (a) (5%) Evaluate the integral $\iint \vec{n} \cdot \nabla \times \vec{v} dA$ over the part of the unit sphere 3 $x^2 + y^2 + z^2 = 1$ above the xy plane, where $\overrightarrow{v} = y \overrightarrow{i}$.
 - (5%) If \overrightarrow{p} is the position vector, show that

$$\oint \vec{\mathbf{p}} \cdot \vec{\mathbf{n}} \, dA = 3 \, V$$

where V is the volume enclosed by a closed smooth surface S, and \vec{n} is the normal outward vector on S.

(a) (8%) Please find the Fourier Integral representation of the function

$$f(x) = \begin{cases} 1 - x^2 & |x| < 1 \\ 0 & |x| > 1 \end{cases}$$

(7%) Evaluate $\int_{0}^{\infty} \left\{ \frac{x \cos x - \sin x}{x^3} \right\} \cos \frac{x}{2} dx$ 072

國立成功大學》學年度化工研究所考試((中)工程數學試題)共工具

5 (10%) It is known that $y_1 = x$ is a solution of the equation

$$(x^2-1)x^2y''-(x^2+1)xy'+(x^2+1)y=0$$

Find a second linearly independent solution to the above equation.

6 Solve the following equation

$$x \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = x t$$

with

$$u(x, 0) = 0, x \ge 0$$

 $u(0, t) = 0, t \ge 0$

- (a) (10%) by the Laplace transformation.
- (b) (10%) by separating variables.

7 (15%) Find the solution to the following set of differential equations by the method of matrix diagonalization.

$$\mathbf{y'} = \begin{bmatrix} -4 & -6 \\ 1 & 1 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 9e^{-3t} \\ -5e^{-3t} \end{bmatrix}$$

with
$$y(0) = \begin{bmatrix} -9 \\ 4 \end{bmatrix}$$
.

8 (10%) In solving a differential equation by the finite difference method, one replaces the differential operator by a difference expression. It will be convenient to consider a constant increment in the independent variable x such that $\Delta x = x_{n+1} - x_n$ and $n \Delta x = x_n$. Also let $\psi(x_n)$, the dependent variable in the differential equation, be denoted by ψ_n . The following operators are defined as

forward difference

 $\Delta \psi_n \ = \ \psi_{n+1} - \psi_n$

backward difference

 $\nabla \psi_n \; = \; \psi_n \; - \; \psi_{n-1}$

central difference

 $\delta\psi_n = \psi_{n+1/2} - \psi_{n-1/2}$

Show that

 $\nabla \Delta \psi_n = \Delta \nabla \psi_n = \delta^2 \psi_n$