國立成功大學 81 學年度化工研究所考試(甲)工程數學試題) 井上頁

$$x \sin 2y dx + (x^2 \cos 2y + 3y) dy = 0$$

$$\begin{cases} x' = x + y \\ y' = 4x + y \end{cases} \text{ where } \mathcal{C}, \ \mathfrak{F} \stackrel{d}{=} \frac{d}{dt}$$

$$f(t) = \begin{cases} 1 & \text{if} & 0 < t < 1 \\ 0 & \text{if} & 1 < t < 2\pi \\ \cos t & \text{if} & t > 2\pi \end{cases}$$

$$\left[\begin{array}{cccccc}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2 \\
0 & 0 & 4 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]$$

5 (12%) Evaluate the surface integral
$$\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$$
 by the divergence theorem, where

$$F = x y^2 i + y^3 j + 4 x^2 z k$$

and S is the surface of the cylinder $x^2 + y^2 \le 4$, $0 \le z \le 5$.

6 (10%) Solve
$$x^2 y'' + 2 x y' - 2 y = 6x$$
 with $y(1) = 3$, $y'(1) = -7$.

7 (12%) Find the solution to the following differential equation in terms of Bessel's functions.

$$y'' + e^{2x} y = 0$$
 (Hint: let $e^x = u$)

國立成功大學 8(學年度化工研究所考試 (甲)工程數學試題) # 工頁

8 (12%) Using the indicated transformations, solve the following partial differential equation where u = u(x, y)

$$x u_{xy} = y u_{yy} + u_y$$
 $(v = x, z = x y)$

9 (10%) Please write down the Lagrange's interpolation formula for the fitted curve passing through the following four points:

$$(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)$$

In addition, what are the deficiencies of the Lagrange's interpolation method.

10 (10%) Find the tangential acceleration and the normal acceleration of the motion given by $\mathbf{r}(t) = t \mathbf{i} - t^2 \mathbf{j}$