國立成功大學 8/ 學年度 《三研究所考試(江)應用數學 試題) 井 2 頁

1 (8%) Solve for the general solution

$$x y' + y + 1 = 0$$
 $(' = \frac{d}{dx})$

2 (10%) Prove $J_{-n}(x) = (-1)^n J_n(x)$ where

$$J_n(x) = x^n \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} m! (n+m)!}$$

3 (10%) Find the Laplace transform of the function

e^{-t} u(t-2), where u(t) is the unit step function.

4 (10%) Find the eigenvalues and eigenvectors of the following matrix

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

5 (10%) Find the Fourier Transform

$$f(x) = \begin{cases} e^{-ax} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (a > 0)

6 (8%) Determine the rank of the following matrix

$$\left[\begin{array}{ccccc}
1 & 0 & 3 & 0 \\
1 & 8 & 3 & 1 \\
1 & 0 & 3 & 1
\end{array}\right]$$

7 (12%) The time rate of change of a population y(t) can be described by the logistic law:

$$\frac{dy}{dt} = a y - b y^2$$
 (a > 0, b > 0)

where the "braking term" - by² has the effect that the population cannot grow indefinitely. Solve this Bernoulli equation (Hint: let $u = y^{-1}$). What is the limit of y(t) as $t \to \infty$?

129

國立成功大學 81學年度 化豆研系的 考試 (心) 应用别型試題) 井 2 頁

Set up the model of the undamped vibrating mechanical system in the following figure for general m_1 (mass), m_2 , k_1 (spring modulus), and k_2 . Find the displacements of functions of time, $y_1(t)$ and $y_2(t)$, of the masses from their positions of static equilibrium ($y_1 = 0$, $y_2 = 0$) when the whole system is at rest. Here $m_1 = 1.5$, $m_2 = 2$, $k_1 = 4.5$, and $k_2 = 6$.

- 9 (10%) If you know $f(t) = \mathcal{L}^{-1}\{F(s)\}$, how would you find $\mathcal{L}^{-1}\left\{\frac{F(s)}{s^2}\right\}$? In addition, determine $\mathcal{L}^{-1}\left\{\frac{s-1}{s^2(s+1)}\right\}$
- 10 (8%) For what c are the planes x + y + z = 1 and 2x + cy + 7z = 0 orthogonal?