82 學年度化工研究所考試((乙組)應用數學試題) 國立成功大學

- (8%) Evaluate the flux of water through the surface S: which is the portion of the plane x + y + z = 2 (unit: meter) in the first octant, when the velocity vector is F = 1 + 2 k, speed being measured in meter/sec.
- (12%) Solve the nonhomogeneous equation: 2

$$y'' - 4y' + 4y = xe^{2x} + x$$

- (10%) Solve $y(t) = 1 + \int_{0}^{t} y(\tau) d\tau$ 3
- en (9%) Determine the rank, eignevalues and eigenvectors of the matrix

$$\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]$$

(10%) Find the f(t) if it Laplace transform $\mathfrak{L}(f)$ equals

$$\frac{s + 2}{(s + 1)^2}$$

(10%) If $y_1(x)$ is a solution of $y''' + p_2(x) y'' + p_1(x) y' + p_0(x) y = 0$, show that another solution can be found by letting $y_2(x) = u(x) y_1(x)$ with $u(x) = \int z(x) dx$ 6 where z is obtained from

$$y_1 z'' + (3y_1' + p_2y_1) z' + (3y_1'' + 2p_2y_1' + p_1y_1) z = 0$$

(8%) Find the general solution of the homogeneous linear system 7

$$y'(t) = Ay = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} y$$
 where $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

(10%) Given that $x e^y - y^2 - z^2 \sin z = 0$, find

(8%) A physical phenomenon is described by the quantities P (pressure), $\ell \mathcal{L}$ (length), m (mass), t (time), and ρ (density). If there is a physical law

$$f(P, Q, m, t, \rho) = 0$$

relating these quantities, show that there is an equivalent physical law of the form

$$G\left(\frac{2^{6p^3}}{m}, \frac{t^{6p^3}}{m^2o}\right) = 0$$

(15%) The equation

$$\frac{\partial C}{\partial t} = D \nabla^2 C \tag{1}$$

appears in a number of problems in sciences and engineering. With suitable assumptions and corresponding initial and boundary conditions, it can describe:

- heating and cooling (spheres, rods, etc.),
- mass transfer in films, fibers, etc.,
- diffusion-controlled reactions (in solution or in a catalyst pellet), (iii)
- start-up flow of a Newtonian fluid,

... and many others.

Select one of the above examples and in the context of the example, explain:

- Where does equation (1) come from?
- Explain the physics of your problem and give suitable initial and boundary (b)
- How to solve your problem? (c)