86 學年度 國立成功大學 化工研究 所 化工熱力类反應工程試題 共 2 頁 項士班招生考試 (甲)

甲.化工熱力學部份 [50%]

以下資料可供作題之參考:

(1) The 1st law of thermodynamics for flow processes:

$$\frac{dE_{c.v.}}{dt} = \sum \dot{M}_i \left[h_i + \frac{U_i^2}{2} + gZ_i \right] + \dot{Q}_{c.v.} - \sum \dot{M}_e \left[h_e + \frac{U_e^2}{2} + gZ_e \right] - \dot{W}_{c.v.}$$

(2)heat capacity for air (-50~25 °C), $C_p=1.0035$ kJ/kg · k

- (11%)—、 The rate of heat transfer to the surroundings from a person at rest is about 400 kJ per hour. Suppose that the ventilation system(空調系統) fails in an auditorium(禮堂) containing 2000 people.
 - (a)How much does the internal energy of the air in the auditorium increase during the first 20 minutes after the ventilation system fails?(4%)
 - (b) Considering the auditorium and all the people as a system, and assuming no heat transfer to the surroundings, how much does the internal energy of the system change?(4%) How do you explain the fact that the temperature of the air increases?(3%)
- (10%) = A small, high-speed turbine operating on compressed air produces 0.1 kW. The inlet and exit conditions are 400 kPa, 25 °C and 100 kPa, -50 °C, respectively. Assuming the velocities to be low, find the required mass flow rate of air.
- (15%) = . A Carnot cycle heat engine receives 500 kJ from a reservoir at 500 °C, and rejects heat at 25 °C.
 - (a) Show the cycle on a T-S diagram, considering the working fluid as the system. (3%)
 - (b)Calculate the work and efficiency of the cycle.(6%)
 (c) Calculate the change in entropy of the high-temperature and low.
 - (c) Calculate the change in entropy of the high-temperature and low-temperature reservoirs.(6%)
- (14%)四、在一氟-液相平衡之系統中,氣相之壓力為 P ,溫度為 T ,某一 component i 在氣相之 mole fraction , fugacity , fugacity coefficient , 及 chemical potential 各為 Y_i , \hat{f}_i , $\hat{\phi}_i$, $\hat{\mu}_i$, 在液相之 mole fraction , fugacity , activity coefficient 及 chemical potential 各為 χ_i , \hat{f}_i , γ_i , μ_i^L , 此 component 在相同 T , P 狀況下,單獨存在時為 液體,其 fugacity 為 f_i , 試回答下列各項:
 - (1)液相之溫度,壓力各為何?(2%)
 - (2)寫下 \hat{f} ,與P之關係式。(3%)
 - (3)寫下 \hat{f}_i 與 f_i 之關係式。(3%)
 - (4)寫下 \hat{f}_{i} 與 \hat{f}_{i} 之關係式。(2%)
 - (5)寫下 μ_i^* 與 μ_i^{ι} 之關係式。(2%)
 - (6) mixture 與 component i 之 molar 與 partial molar Gibbs energy 各為 G 與 \overline{G}_i ,寫下 G 與 \overline{G}_i 之關係式。(2%)

(背面仍有題目,請繼續作答)

86 學年度 國立成功大學 碩士班招生考試

化工 化工 熱力學 化學反應工程學

世 は 思 第 2 頁

乙、化學反應工程部份[50%]

參考資料:

$$\begin{split} & [(k_c d_p/D)(\,\epsilon_b/(1\!-\!\epsilon_b))(1/\gamma)] = [(Ud_p\rho)/(\mu(1\!-\!\epsilon_b)\,\gamma)]^{1/2} \, [\mu/(\rho D)]^{1/3} \\ k_c &= \, \text{外質傳系數 , } D = 擴散系數 , \epsilon_b = 床孔隙度 , \gamma = 形狀因子 , \\ U &= 流速 , \rho = 密度 , d_p = 粒徑 , \mu = 黏度 \end{split}$$

- 一、簡答下列問題 (每小題佔2%)
 - (1) 擔體觸媒通常含有那兩部份?並請舉一例。
 - (2)那一類型的觸媒使用前需要還原?並請舉一例。
 - (3)以固體觸媒催化反應,何以氣相反應之外質傳阻力常可忽略而液相反應則否?
 - (4) 當填充床中觸媒用量(重量或體積)保持一定,在何種情況下反應速率(-r_A')不隨觸媒粒徑(d_p)而變?
 - (5)同上題前半段,在何種情況下,(-r_A') ∝ 1/d_p^{3/2}?
- 二、有一具孔性之平板形礦石(雨端以惰性物質密封),置於酸液中,酸液中之成份A會與礦石中之成份B反應: 2A(L)+B(S)→P(L),生成物P會溶於酸液中。已知B在礦石中所佔之百分率很小,因此反應後礦石之外形與孔徑無顯著改變。請寫出平板礦石中A與B之質量平衡式與相關之起始條件與邊界條件。 (7%)
- 三、氣相放熱反應在管狀反應器中進行時,反應器外保持溫度 T_R ,進料溫度 T_0 。若 $T_R < T_0$,請畫沿反應器的溫度分佈圖(溫度座標上請標明 T_R 及 T_0),並説明此溫度變化的理由。 (5%)
- 四、反應物 A 在管狀反應器中進行氣相反應成 B 與 C ,

 $A \rightarrow B$ $r_B = k_I C_A^2$

 $k_l = 1 l/\text{gmol·sec}$

 $A \rightarrow C$ $r_C = k_2 C_A$

 $k_2 = 0.01 \text{ sec}^{-1}$

體積流率為 $0.01\ l/sec$, A 進口濃度為 $0.1\ gmole/l$, 求 A 出口濃度為 $0.01\ gmole/l$ 時 B 與 C 的濃度及所需的反應器體積。 (11%)

 \pounds • Propane is oxidized into CO₂ and H₂O in an isothermal, constant pressure combustion reactor. Please derive the reactor volume as a function of conversion, $X_{propane}$. Assume the ideal gas law.

Initial conditions: $P_0 = 1$ atm, $n_{propane} = 0.1$, $n_{O2} = 0.5$, $n_{Ar} = 0.4$, V = 10 liter. (5%)

- > When a reaction is one and half order inside a cylindrical tube reactor, please predict and explain in detail which one in the following two cases:
 - (a) a plug flow inside the tube, and
 - (b) a laminar flow inside the tube,

has a higher conversion, if the reaction temperature, reactor volume, reactor pressure, and total inlet flow rate are all maintained the same in both cases. (6%)

t > If a complex reaction, A + 2B → C + 4D, is first order with respect to A in the temperature range between 100°C and 350°C, and is second order with respect to B in the temperature range between 350°C and 500°C. Please explain what may cause such a change. Is it possible that the reaction mechanism is changed into a new one when the temperature is raised from 200°C to 425°C? (6%)