

 The cell potential of the following concentration cell is caused by the concentration gradient between the two chloride solutions in the cell

 $Ag Ag Cl(s) Cl^{-}(0.02 \text{ mol kg}^{-1}) Cl^{-}(0.10 \text{ mol kg}^{-1}) Ag Cl(s) Ag$

- (a) Write the half-cell reactions and the cell reaction.
- (b) Calculate the electromotive force of the concentration cell at 25 ℃, assuming zero junction potention for the salt bridge and the activity coefficients are unity.
- (c) Which is the positive electrode?

(15%)

- 2. A sample of ethanol weighing 0.7663 g is burned in a bomb calcrimeter for which the heat capacity, including the sample, is 5643 J K⁻¹. A temperature rise from 20.62 to 24.64 °C is observed. (a) What are the values of q, w, and ΔO, all per mole ethanol ? (b) What is the change in the number of moles of gaseous reagents per mole of ethanol ? (c) What is the value of ΔH for the reaction?
- 3. (a) Starting from the definition of Joule-Thomson coefficient, $\mu_{ij} = (\partial T/\partial P)_{ij}$, show that

$$\mu_{\Pi} = \frac{T(\frac{\partial V}{\partial T})_{\rho} - V}{C_{\alpha}}$$

and for a van der Waals gas

$$\mu_{M} = \frac{(\frac{2\pi}{RT})}{C_{n}}$$

- ·(b) Calculate ΔH for an isothermal compression of 1 mol N₂ from 0.1 to 25 MPa at 300 K. Take C_p to be 4.5R, independent of temperature. (15%)
- 4. For oxygen at 1 bar and 25 °C, the collision diameter is 0.361 nm, Calculate the mean free path, the most probable speed, mean speed, root-mean-square speed, and the average time between collisions.
 (15%)
- Assume the following data for the gas-phase reaction

$$2\,\mathrm{NO}$$
 + Cl_1 \rightarrow $2\,\mathrm{NOCl}$

at 298 K

[NO] /mol L*1	[Cl ₁] /mol L ⁻¹	Initial Rate /mol L ⁻¹ s ⁻¹
0.02	0.02	7.1 × 10 ⁻⁵
0.04	0.02	2.8×10^{-4}
0.02	0.04	1.4 × 10 ⁻⁴

- (a) Find the order with respect to each reactant and find the rate constant.
- (b) The initial concentrations of NO and Cl₁ are 0.04 mot L⁻¹ and 0.02 mol L⁻¹, respectively. Calculate the half-life and the concentration of Cl₁ at t = 100 s. (26%)
- 6. Describe the following terms briefly
 - (a) Boyle temperature (3%)
 - (b) Inversion temperature (3%).
 - (c) Relaxation time (3%).
 - (d) Phase rule (3%)
 - (a) Osmosis and osmotic pressure (3%)
 - (f) Assumptions for Langmuir adsorption isotherm (\$%).