88 學年度 國立成功大學 化学工程 系化工熱力與反應工程試題 共 2 頁

甲, 化工熱力學部份 (50%)

(14%) 1. If the molar density of a binary mixture at different mole fractions is given by the empirical expression

 $\rho = a_0 + a_1x_1 + a_2x_1^2$ where a_0 , a_1 and a_2 are constants.

Find the corresponding partial molar volumes, ∇_1 and ∇_2 , in terms of a_0 , a_1 , a_2 and x_1 .

- (14%) 2. Estimate the value of flf^{sol} for liquid water at 150 °C and 15,000 kPa, where f^{sol} is the fugacity of saturated liquid at 150 °C and 476 kPa. The volume of saturated liquid water at 150 °C is 1.019 cm³/g.
 [Hint: G = VdP SdT, G = Γ(T) + RTlnf, and the volume of liquid water is fairly constant.] R = 8.314 (Pa m³)/(mol K).
- (14%) 3. A 50-kg block of iron casting at 500 K is thrown into a large lake that is at a temperature of 285 K. The iron block eventually reaches thermal equilibrium with the lake water. Assuming an average specific heat of 0.45 kJ/(kg K) for the iron, determine
 - (a) the entropy change of the iron block,
 - (b) the entropy change of the lake water, and
 - (c) the entropy generated during the process.
- (8%) 4. Derive the Clapeyron and the Clausius/Clapeyron equations for two-phase systems.

88 學年度 國立成功大學 化學工程系化工藝力多度遊遊 第二頁

乙、反應工程 (50%)

How many steady states are possible for A → B · r = k in an adiabatic CSTR if the reaction is exothermic? endothermic?
 Please explain your answer in detail. (14%)

A general energy balance for a CSTR is $F_{A0}X\Delta H_R = F_{A0}C_{P0}(T-T_0) + UA(T-T_a)$

 ΔH_R : heat of reaction

T₀ : feed temperature

T_a: ambient temperature

U : heat transfer coefficient from the reactor to the ambient

A : heat transfer area

2. Consider the reactions

$$A \longrightarrow B$$
 $r_1 = k_1 C_A$
 $B \longrightarrow C$ $r_2 = k_2 C_B$
 $A \longrightarrow D$ $r_3 = k_3 C_A^2$
with B the desired product.

Should one use a PFR or CSTR and is there an optimum residence time to obtain (a) maximum C_B or

- (b) maximum selectivity, S, where $S = \frac{C_B}{C_{A0} C_A}$? Please explain your answer in detail. (18%)
- 3. The reaction $H_2 + 1/2 O_2 \rightarrow H_2O$ has a rate-limiting step $H_{(ads)} + O_{(ads)} \rightarrow OH_{(ads)}$ and the rate of the reaction is $r = K_R \theta_H \theta_O$

Derive a reaction rate expression $r(P_{H2}, P_{O2})$ for this reaction assuming Langmuir-Hinshelwood kinetics with competitive adsorption. (18%)