分析化學選擇題共 10 小題, 每一小題 5 分, 答錯一小題扣 10 分.

- This problem deals with the amino acid cysteine, which we will abbreviate H₂C. The acid dissociation constants of cysteine are pKa₁ = 1.71; pKa₂ = 8.38; pKa₃ = 10.77.
 - (A) A 0.0300 M solution was prepared by dissolving dipotassium cysteine, K₂C, in water. Then 40.0 mL of this solution was titrated with 0.0600 M HClO₄. Calculate the pH at the first equivalence point.
 - () (1) (a) 0.86 (b) 5.04 (c) 5.38 (d) 9.56
 - (B) Calculate the quotient [C²]/[HC] in a solution of 0.0500 M cysteinium bromide (the salt H₃C'Br).
 - () (2) (a) 7.4×10^{-10} (b) 4.71×10^{-5} (c) 1.00 (d) 740
- A solution was prepared by dissolving 0.1947 g of HgO(FW 216.59) in 20 mL of water containing 4 g of KBr. Titration with HCl required 17.98 mL to reach a phenolphthalein end point. Calculate the molarity of the HCl.
 - () (3) (a) 0.0873M (b) 0.1000M (c) 0.1083M (d) 0.1947M
- 3. Calculate pCu^{2*} at each of the following points in the titration of 50.00 mL of 0.00100M Cu^{2*} with 0.00100 M EDTA at pH 11.00 in a solution whose NH₃ concentration is somehow fixed at 0.100 M. At this pH, alpha_{Y4} = 0.85, The stepwise formation constants for the reaction of Cu^{2*} with NH₃ are $10^{3.99}$, $10^{3.34}$, $10^{2.73}$, $10^{1.97}$. The Formation constant for Cu^{2*} -EDTA complex is $10^{18.80}$.
 - (A) Before titration, pCu²⁺ is:
 - () (4) (a)7.33 (b)10.06 (c)11.08 (d)12.03
 - (B) At the equivalence point, pCu²⁺ is:
 - () (5) (a) 1.06 (b) 4.46 (c) 8.08 (d) 15.06
 - (C) At 55.00 mL titration, pCu²⁺ is:
 - () (6) (a) 4.76 (b) 17.73 (c) 17.8 (d) 18.8
- 4. A solution of I_3 was standardized by titrating freshly dissolved arsenious oxide (As₄O₆, FW 395.683). The titration of 25.00 mL of a solution prepared by dissolving 0.3663 g of As₄O₆ in a volume of 100.0 mL required 31.77 mL of I_3 .
 - (A) Calculate the molarity of the I₃ solution.
 - () (7) (a)0.02914 (b)0.0568 (c)0.177 (d)0.3663M
 - (B) When shall the starch indicator be added?

88 學年度國立成功大學 系 漢機似學 試題 共 3 頁 原子度 碩士班招生考試 化工研究 丽 及分析 化學 試題 第 2 頁

- () (8) (a) At the beginning of the titration. (b) Near the end point in the titration.
 - (c) It doesn't matter.
- 5. From the reduction potentials below, where the FW of I2 is 253.8,

$$I_2(s) + 2e \leftrightarrow 2I$$
 $E^o = 0.535 \text{ V}$
 $I_2(aq) + 2e \leftrightarrow 2I$ $E^o = 0.620 \text{ V}$
 $I_3 + 2e \leftrightarrow 3I$ $E^o = 0.535 \text{ V}$

(A) Calculate the equilibrium constant for the reaction

$$I_2 \text{ (aq)} + I^2 \leftrightarrow I_3^2$$

() (9) (a) 7×10^2 (b) 0.085 (c)2.87 (d)74

(B) Calculate the solubility (g/L) of I_2 (s) in water . () (10) (a) 0.0014 (b) 0.34 (c) 63 (d) 740

- Choose the correct one or ones. (30%)
- ()1. Which of the noble gases would you choose as the lowest-temperature liquid refrigerant ? (1) He, (2) Ne, (3) Ar, (4) Kr.
- ()2. Which of the following complexes obeys the rule of 18 (EAN rule)?
 (1) Ni(NH₃)₆²⁺, (2) Ni(CN)₄²⁻, (3) Ni(CO)₄, (4) CoCl₄²⁻.
- ()3. Consider the acidity of the following species, which ones are correct?
 (1) [Fe(OH₂)₆]³⁺ > [Fe(OH₂)₆]²⁺, (2) [Ga(OH₂)₆]³⁺ > [Ai(OH₂)₆]³⁺, (3) HCiO₃
 > HCiO₄, (4) HMnO₄ > H₂CrO₄.
- ()4. Which of the following compounds present an explosion hazard?
 (1) NH₄ClO₄, (2) Mg(ClO₄)₂, (3) NaClO₄, (4) [Fe(H₂O)₆](ClO₄)₂.
- ()5. Which of the following mixtures would be expected to have maximum boiling points? (1) methyl acetate – chloroform, (2) C₆H₁₂ - C₂H₅OH, (3) acetone – chloroform, (4) water –C₂H₅OH.
- ()6. Which of each of the following statements are correct? (1) CaCl₂ is more ionic than MgCl₂, (2) LiCl is more soluble in water than KCl, (3) CaCl₂ is more covalent than CdCl₂, (4) Al₂O₃ is harder than Ga₂O₃.
- Write balanced chemical equations for three major industrial preparations of H₂.
 Propose a more convenient reaction for use in the laboratory. (10%)
- Indicate the difference between each of the following: (a) The Lewis acidity of γalumina that has been heated to 900°C versus γ -alumina that has been heated to 100°C, (b) The Brønsted acidity of silica gel versus γ -alumina. (10%)