- For the elementary liquid-phase reaction A → B, many combinations of CSTR, PFR and recycle reactors may be considered. The total volume of the reactors is 10 liters. The rate constant is 1·min⁻¹ and pure A is fed at 5 liter·min⁻¹. Please find the maximum conversion. (8%)
- A long plug flow reactor was used to carry out an exothermic reaction with inlet temperature
 To. The temperature out side of the reactor, Ta, remains constant. (6%)
 - (a) Sketch the temperature profiles inside of the reactor along the reactor length for:
 - i. To > Ta,
 - ii. To < Ta.
 - (b) What is the major difference between these two profiles?
- 3. A first order reaction 2A → B is carried out in an isothermal plug flow reactor. The inlet gas contains 50% A, 5% B and 45% inert. The feed flow rate of A is 1 mole·min⁻¹. The feed temperature is 100 °C and the total pressure is 10 atm. At this temperature, the rate constant is 0.1 min⁻¹. What is the reactor volume to give outlet gas containing 10% A? (20%)
- (a) The reaction 2NO+O₂ → 2NO₂ is third order. Assuming that a small amount of NO₃ exists in rapid reversible equilibrium with NO and O₂ and that the rate-determining step is the slow bimolecular reaction NO₃ + NO → 2NO₂, derive the rate equation for this mechanism.
 (4%)
 - (b) Another possible mechanism for the reaction $2NO + O_2 \rightarrow 2NO_2$ is
 - (1) $NO + NO \xrightarrow{k_1} N_2O_2$
 - (2) $N_2O_2 \xrightarrow{k_2} 2NO$
 - (3) $N_2O_2 + O_2 \xrightarrow{k_2} 2NO_2$

Apply the pseudo-steady-state hypothesis (PSSH) to obtain the rate law.

If only a very small fraction of the N_2O_2 formed in (1) goes to form products in reaction (3), while most of the N_2O_2 reverts to NO in reaction (2), and if the activation energies are E_1 , E_2 , and E_3 for reactions (1), (2) and (3), respectively, what is the overall activation energy? (8%)

(c) How would you distinguish experimentally between the mechanisms suggested in parts (a) and (b)? (3%)

(背面仍有題目,請繼續作答)

93學年度國立成功大學 化學工程學系

甲組 化學反應工程

試 題

Calculate the selectivities of forming B in CSTR and PFR reactors at 70% conversion of A starting with $C_{A0} = 5$ moles/liter in the parallel reactions

$$A \xrightarrow{k_1} B \qquad r_1 = k_1 = 2$$

$$A \xrightarrow{k_2} C \qquad r_2 = k_2 C_A = C_A$$

where rate are in moles/liter-min. (8%)

6. A case of noncompetitive inhibition in enzyme reaction is represented in the following mechanism:

$$E + S \xleftarrow{k_1} ES$$
 (1)

$$E + S \underset{k_{-1}}{\longleftrightarrow} ES$$

$$E + I \underset{k_{-2}}{\longleftrightarrow} EI \quad (inactive)$$

$$(1)$$

$$ES + I \xrightarrow{k_3} EIS$$
 (inactive) (3)

$$ES \xrightarrow{k_r} E + P$$
 (4)

where E is the enzyme, S is a substrate, I is the inhibitor and P is a product.

Show the steady-state rate equation is the form

$$r_p = \frac{V_{\text{max}} C_S}{C_S (1 + C_I / K_3) + K_m (1 + C_I / K_2)}$$

where V_{max} is the maximum initial rate $r_{po, max} = k_r C_{E0}$ and K_m is the Michaelis constant $(K_m = (k_{-1} + k_r)/k_1). (10\%)$

7. Hydrogen (H) and toluene (T) are reacted over a solid mineral catalyst containing clinoptilolite (a crystalline silica-alumina) to yield methane (M) and benzene (B):

$$C_6H_5CH_{3(g)} + H_{2(g)} = C_6H_{6(g)} + CH_{4(g)}$$

The reaction sequence for this hydrodemethylation is

$$T_{(g)} + S = T \cdot S$$
 Adsorption of toluene on the surface

$$(K_A = k_a/k_{-a}) \tag{1}$$

$$H_2$$
 + T · S == B · S + $M_{(g)}$ Surface reaction between adsorbed toluene

and gaseous hydrogen
$$(K_S = k_s/k_{-s})$$
 (2)

$$B \cdot S == B_{(g)} + S$$
 Desorption of benzene from the surface

$$(K_D = k_d/k_{-d}) (3)$$

Assume that the surface reaction is the rate-determining step.

- (a) Derive the rate law in terms of partial pressures of species present and the total concentration of sites (Ct). (10%)
- (b) For an equal molar feed consisting only of toluene and hydrogen, express the initial rate in terms of total pressure (P_o). (5%)

93學年度國立成功大學 化學工程學系 甲組 化學反應工程

試題 共3 頁 第3 頁

8. The isomerization A → B is taking place on the surface of a solid sphere. The surface reaction follows a Langmuir-Hinshelwood single-site mechanism for which the rate law is

$$-r_{As}^{2} = \frac{k_{r}C_{As}}{1 + K_{A}C_{As} + K_{B}C_{Bs}} \tag{4}$$

and the molar flux to the surface is equal to the rate of reaction on the surface, i.e.,

$$W_{A} = -r_{As}^{*} = k_{c}(C_{A} - C_{As}) \tag{5}$$

where $k_r = \text{rate constant}$,

 k_c = mass-transfer coefficient,

C_A, C_{As} = concentrations of component A in the bulk phase and at surface, respectively.

(a) Assuming that only very weak adsorption of A and B is needed to consider as the temperature is sufficiently high, show that the rate of reaction on the surface is (6%)

$$W_{A} = -r_{As}^{"} = \frac{k_{c}k_{r}C_{A}}{k_{r} + k_{c}} \tag{6}$$

- (b) What is the rate of reaction for a rapid reaction? How would be the effects of velocity and particle size of catalyst on the reaction rate? (6%)
- (c) What is the rate of reaction for a slow reaction? How would be the effects of velocity and particle size of catalyst on the reaction rate? (6%)