1. (16%)

A piston/cylinder arrangement is placed in a constant-temperature bath. The piston slides in the cylinder with negligible friction, and an external force holds it in place against an initial pressure of 10,000 Pa. The cylinder contains 1 mole ideal gas with the initial volume of 0.5 m³. The gas constant R = 8.314 Joule mole⁻¹ K⁻¹.

- (a) The external force on the piston is reduced gradually, and the gas expands isothermally as its volume doubles. What is the work done by the gas? (4%)
- (b) How much work would be done if the gas were suddenly expanded to double of its initial value instead of being gradually expanded? (4%)
- (c) In comparison with (a) and (b), which case has a greater work done? Explain why. (4%)
- (d) For real gases, would the conclusion in (c) be also true? Explain why. (4%)

2. (17%)

One mole of gas in a closed system undergoes an adiabatic expansion. At the initial state, the pressure and the temperature are V_1 and T_1 , respectively. The final volume of the gas is $2V_1$. The gas obeys the following equation of state:

$$\frac{PV}{RT} = 1 + B^{\dagger}P,$$

where the coefficient B^{+} is assumed to be a constant. The heat capacity at constant volume is given by Cv = 3R/2.

- (a) Is the final temperature T_2 expected to be lower or higher than T_1 ? Explain why without solving the problem in detail. (4%)
- (b) Determine T_2 . (5%)
- (c) If B' < 0, would the answer to (b) be lower or higher than that of ideal gas? (4%)
- (d) Provide a plausible explanation for (c). (4%) (背面仍有題目,請繼續作答)

93學年度國立成功大學 化學工程學系 甲組 化工熱力學

共 3 頁 第 2 頁

3. (16%)

Consider a reversible cycle traversed by an ideal gas as the working fluid. It consists of four following reversible steps:

- 1. $a \rightarrow b$: adiabatic compression from a to b
- 2. $b \rightarrow c$: isothermal expansion from b to c
- 3. $c \rightarrow d$: adiabatic expansion from c to d
- 4. $d \rightarrow a$: isothermal compression from d to a
- (a) Please sketch the complete cycle on a P-V diagram according to the above statements, where P and V stand for pressure and volume. (5%)
- (b) What is the entropy change from a to c? That is, to estimate the entropy change from $a \rightarrow b \rightarrow c$. (5%)

For your convenience, you can assume there is only one mole of ideal gas in the system. Use T_j for temperature of the ideal gas at state j. Please label all variables used clearly and describe them precisely.

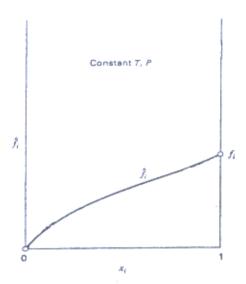
- (c) What is the entropy change of the whole cycle? (3%)
- (d) How much work in maximum can the working fluid perform in a complete cycle? (3%)

4. (17%)

If John conducts a series of thermodynamic experiments for a homogeneous fluid of constant composition at different temperature T and pressure P, he measures and records T and P only. Certainly, he gets the Gibbs free energy G. However, he tries to obtain other thermodynamic quantities, such as volume V, enthalpy H, entropy S and internal energy U.

- (a) Please advise him how to find all of them. (6%)
- (b) Meanwhile, if John can get the residual Gibbs free energy from his experimental data, can you help him obtain the residual enthalpy and entropy under a constant-*T* condition? Please make your suggestion. (6%)
- (c) If Tom challenges John on the consistency of his experimental data, could you advise him how to respond it? Please briefly describe your strategy only. (5%)

93學年度國立成功大學 化學工程學系 甲組 化工熱力學


武題 共 **3**頁

5. (20%)

Please explain the following rules and write down the respective equations. (9%)

(a) Raoult's law; (b) Henry's law; (c) Lewis/Randall rule

Please plot Fig. 1 on your answer sheet, and draw Henry's law and Lewis/Randall rule on the figure. (4%)

Figure 1 Composition dependence of fugacity for species *i* in a binary solution.

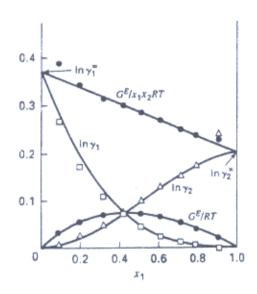


Figure 2 The methyl ethyl ketone(1)/toluene(2) system at 50°C.

Describe the characteristics of the following curves:

 G^E/RT (2%); $ln\gamma_1$ (3%); the relation between $dln\gamma_1/dx_1$ and $dln\gamma_2/dx_1$ (2%)

6. (14%)

The volume change of mixing (cm³ mol⁻¹) for the system ethanol(1)/methyl butyl ether(2) at 25°C is given by the equation:

$$\Delta V = x_1 x_2 \cdot [-1.026 + 0.220 \cdot (x_1 - x_2)]$$

Given that $V_1 = 58.63$ and $V_2 = 118.46$ cm³ mol⁻¹, what volume of mixture is formed when 600 cm³ of pure species 1 is mixed with 1,200 cm³ of species 2 at 25°C? What would be the volume if any idea solution were formed?