
國立成功大學九十四學年度碩士班招生考試試題

編號: 17 157 系所:化學工程學系乙組

科目:無機化學及分析化學

無機化學部份,選擇題共五題,每一小題 10 分,此部份總分為 50 分。 請簡述計算過程或理由於答案卷上。若您的答案不在選項上請選 0。

(/opt)1. The distribution of energy states and their electron populations for a material is

This material is (1) a metallic conductor (2) an insulator (3) a semiconductor.

(lopt)2. Would GaAs doped with Se be (1) an n-type or (2) a p-type semiconductor?

- ([0])3. From spectral data the dissociation energy of ClF has determined to be 253 kJ/mole. The ΔH_f° of ClF(g) is -25.7kJ/mole. The dissociation energy of Cl₂ is 239 kJ/mole. Calculate the dissociation energy of F₂.
 - (1) 107.8 kJ/mole, (2) 215.6 kJ/mole, (3) 466.3 kJ/mole
- (10 H)4. The emission spectrum of atomic Ca shows a transition from a ${}^{3}D$ state to a ${}^{3}P$ state. If the selection rule permits only $\Delta J = \pm 1$, or 0, (but not J = 0 to J = 0), how many lines wil be observed for this transition?

(1) 2 (2) 4 (3) 6 (4) 8

(10pt)5. The ionization energies of Ti are as follows:

I II III IV V

6.82 13.58 27.49 43.27 99.22 es

What stable oxidation states are expected for Ti in compounds?

(1) Ti(I) (2) Ti(II) (3) Ti(III) (4) Ti(IV) (5) Ti(V)

(背面仍有題目,請繼續作答)

編號: 7 157 系所: 化學工程學系乙組

科目:無機化學及分析化學

分析化學部份,選擇題共五題,每一小題 10 分,此部份總分為 50 分。 請簡述計算過程或理由於答案卷上。若您的答案不在選項上請選 0。

- (16 pt)1. A 50.0-mL sample containing Ni²⁺ is treated with 25.0 mL of 0.0500 M EDTA to complex all the Ni²⁺ and leave excess EDTA in soluton. The excess EDTA was then back-titrated, requiring 5.00 mL of 0.0500 M Zn²⁺. What was the concentration of Ni²⁺ in the original solution?
 - $(1) 0.0150 \,\mathrm{M}$ $(2) 0.0200 \,\mathrm{M}$ $(3) 0.0735 \,\mathrm{M}$ $(4) 0.0812 \,\mathrm{M}$

($p_0 p_t$)2. Calculate E° for the reaction HOBr + 2e \rightarrow Br

$$E^{\circ} = 1.491V$$
 1.584V 1.098V $BrO_3 \rightarrow HOBr \rightarrow Br_2 \rightarrow Br_3$

- $(1)\ 0.050\ V \qquad (2)\ 0.486\ V \qquad (3)\ 1.341\ V \qquad (4)\ 2.682\ V$
- (lo ρt)3. A 50.00-mL sample containing La³⁺ was treated with sodium oxalate to precipitate La₂(C₂O₄)₃, which was washed, dissolved in acid, and titrated with 18.04 mL of 0.006363 M KMnO₄. Calculate the molarity of La³⁺ in the unknown.
 - (1) 2.296 mM (2)3.826 mM (3) 4.592 mM (4) 5.773 mM
- (lopt)4. A 0.0450 M solution of benzoic acid has a pH of 2.78. Calculate pKa for this acid.
 - (1) 3.64 (2) 4.19 (3) 5.78 (4) 6.88
- (10 pt)5. How many grams of Na₂CO₃ (FW 105.99) should be mixed with 5.00 g of NaHCO₃ (FW 84.01) to produce 100 mL of buffer with pH 10.00?

(1) 2.96 g (2) 3.96 g (3) 4.69 g (4) 5.84 g

Note 1: The
$$\alpha_{Y4} = 0.36$$
 at pH = 10; $\alpha_{Y4} = 2.5*10^{-7}$ at pH = 4.5

Note 2:
$$Hg^{2+} + 2e^{-} = Hg_{(l)}$$
 $E^{0} = 0.852 \text{ V}$

Note 3:
$$La^{3+} + 3e^{-} = La_{(s)}$$
 $E^{\circ} = -2.379 \text{ V}$

Note 4:
$$MnO_4^- + 8 H^+ + 5 e^- = Mn^{2+} + 4 H_2O$$
 $E^0 = 1.507 V$

Note 5:
$$2 CO_2(g) + 2 H^+ + 2 e^- = H_2C_2O_4$$
 $E^0 = -0.432 V$

Note 6: For
$$H_2CO_3$$
, the $pK_{a1} = 6.352$, $pK_{a2} = 10.329$