國立成功大學九十六學年度碩士班招生考試試題

共 2 頁,第1頁

編號: 109 系所:化學工程學系乙組

科目:物理化學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

 $R=8.314 \text{ J K}^{-1} \text{ mol}^{-1} = 8.314 \text{x} 10^{-2} \text{ L bar K}^{-1} \text{ mol}^{-1} = 8.206 \text{x} 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$

- 1. For each of the following processes, state which of the quantities ΔU , ΔH , ΔS , ΔA , and ΔG are equal to zero: (15%)
 - a. Isothermal reversible expansion of an ideal gas.
 - b. Adiabatic reversible expansion of a nonideal gas.
 - c. Vaporization of liquid water at 100 °C and 1 atm pressure.
 - d. Reaction between H₂ and O₂ in a thermally insulated bomb.
 - e. Reaction between H₂SO₄ and NaOH in dilute aqueous solution at constant temperature and pressure.
- 2. One mole of an ideal gas at T K expands isothermally from a pressure of P_1 bar to P_2 bar. What are w, q, ΔU , ΔH , ΔS , ΔA , and ΔG in the following cases? (a) The expansion is free. (b) The gas and its surroundings form an isolated system, and the expansion is free. (15%)
- 3. Liquid water can be superheated to 110 °C at 1.01325 bar. Calculate the changes in entropy, enthalpy, and Gibbs energy for the process of superheated water at 110 °C and 1.01325 bar changing to steam at the same temperature and pressure. The enthalpy of vaporization is 40.58 kJ mol⁻¹ at 100 °C and 1.01325 bar. Given: $C_P(H_2O, 1) = 75.3 \text{ J K}^{-1} \text{ mol}^{-1}$ and $C_P(H_2O, g) = 33.6 \text{ J K}^{-1} \text{ mol}^{-1}$. (15%)
- 4. (a) The dissociation pressures of CaCO₃(s) versus temperature are shown as Fig. 1. Which phases are there in the regions I, II, and III, respectively?
 - (b) How many degrees of freedom are there when only $CaCO_3(s)$ and $CO_2(g)$ are present?
 - (c) Calculate the value of ΔG° at 1000K. (15%)

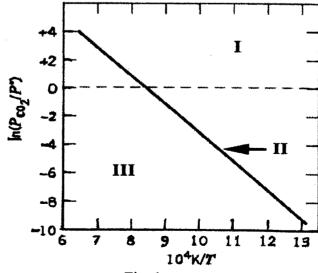


Fig. 1

(背面仍有題目.請繼續作答)

共 五頁,第2頁

國立成功大學九十六學年度碩士班招生考試試題

編號: 109 系所:化學工程學系乙組

科目:物理化學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

- 5. Benzene and toluene form very nearly ideal solutions. At 80°C, the vapor pressure of benzene is100.4 kPa, and that of toluene is 38.7 kPa. For a solution containing 4 mole of benzene and 6 mole of toluene, (a) calculate the partial pressures and the total vapor pressure of the solution at 80°C, and (b) calculate the mole fraction of benzene in the vapor at 80°C. (10%)
- 6. The following thermodynamic data apply to the complete oxidation of butane at 25° C. $C_4H_{10(g)} + 6.5 O_{2(g)} \rightarrow 4 CO_{2(g)} + 5 H_2O_{(l)}$

$$\Delta H^{o} = -2877 \text{ kJ mol}^{-1}$$

 $\Delta S^{o} = -432.7 \text{ JK}^{-1} \text{mol}^{-1}$

- (a) When one mole of methane is oxidized completely in a Carnot engine that operates between 100 °C and 25 °C, what is the maximum work that could be produced? (b) Suppose that a completely efficient fuel cell could be set up utilizing this reaction. Calculate the electromotive force and the maximum electrical work. (15%)
- 7. For the reaction $A + B \rightarrow D$ consider the following mechanism:

$$A + B \xrightarrow{k_1 \atop k_2} C \tag{1}$$

$$C \xrightarrow{k_3} D \tag{2}$$

- (a) Derive the rate law using the steady state approximation to eliminate the concentration of C. (7%)
- (b) Derive the rate law by assuming that the reaction (2) is the rate determining step, and express the pre-exponential factor A and activation energy Ea for the second-order rate constant rate in terms of A_1 , A_2 and A_3 and Ea_1 , Ea_2 , and Ea_3 for the three steps. (8%)