1．$(\mathbf{1 0 \%})$ Determine the following statement is true or false．
（1）（1\％）Given an invertible matrix $\mathbf{A}, \operatorname{det}\left(\mathbf{A}^{-1}\right)=1 / \operatorname{det}(\mathbf{A})$ ，where det denotes determinant．
（2）（1\％）The series $\sum_{m=0}^{\infty} \frac{x^{m}}{m!}$ always converges．
（3）$(1 \%) \operatorname{det}(\mathbf{A}+\mathbf{B})=\operatorname{det}(\mathbf{A})+\operatorname{det}(\mathbf{B})$ ．
（4）(1%) Given a 2×2 matrix \mathbf{A} with determinant of $3, \operatorname{det}(2 \mathbf{A})=6$ ．
（5）$(1 \%) f * 1=f$ ，where＊denotes convolution operator．
（6）$(1 \%) \operatorname{div}($ curl $\mathbf{v})=0$ ，where \mathbf{v} is a vector．
（7）（ 1% ）Both \mathbf{A} and \mathbf{B} are $n \times n$ matrices，$(\mathbf{A}+\mathbf{B})^{2}=\mathbf{A}^{2}+2 \mathbf{A B}+\mathbf{B}^{2}$ ．
（8）（1\％）A matrix and its transpose do not have the same rank．
（9）（ 1% ）Given an invertible matrix $\mathbf{A},\left(\mathbf{A}^{2}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{2}$
（10）（1\％）The determinant of an orthogonal matrix has value of 0 ．

2．（15\％）Given $f(t)=\left\{\begin{array}{l}c, 0<t<1 \\ h(t), t>1\end{array}\right.$ ，where c is a constant and $h(t)$ is a function．If the Laplace transform of $f(t)$ is $F(s)$ ．Find the Laplace transform of $f(t+1)$ in terms of $F(s)$ ．

3． $\mathbf{(1 5 \%)}$ Suppose that a cylindrical tank has diameter D ．The top of the tank is open and a hole with diameter d at the bottom．（1）(10%) Find the height of water (h) in the tank at any time if the initial height of the water when the hole is opened is H ．（2）（5\％）When will the tank be empty？

4．（ $\mathbf{1 5 \%} \%$ ）Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ ．Prove that（1）（ 5% ） \mathbf{A}^{-1} has eigenvalues $1 / \lambda_{1}, \ldots, 1 / \lambda_{n} ;(2)(5 \%) \mathbf{A}^{m}(m=1,2, \ldots)$ has eigenvalues $\lambda_{1}^{m}, \ldots, \lambda_{n}^{m}$ ；（3）（5\％） $\mathbf{A}-k \mathbf{I}$ has eigenvalues $\lambda_{1}-k, \ldots, \lambda_{n}-k$.

5．（15\％）Solve the initial value problem，$x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=2 x^{4} e^{x}, y(1)=-2, y^{\prime}(1)=-8+2 e$ ．
6．(15%) Given a cardioid $r=a(1-\cos \theta)$ ，where $a>0$ is a constant and $0 \leq \theta \leq 2 \pi$ ．
（1）(8%) Find the area of this cardioid；（2）（7\％）Find the perimeter of this cardioid．

7．$\left(\mathbf{1 5 \%} \%\right.$ ）Find the Fouries series of the function $f(x)=x^{2},-\pi<x<\pi$ ，which is assumed to have the period of 2π ．

