編號:	117 國立成功大學一〇一學年度碩士班招生考試試題	共	丨頁	・第	頁
系所組別	: 水利及海洋工程學系甲、乙組				
考試科目	:工程數學	考試日期	: 022	5, 節次	: 3
]
1. (109	6) Determine the following statement is true or false.				
(1)	(1%) Given an invertible matrix A, $det(A^{-1})=1/det(A)$, where det denotes de	terminant.			
(2)	(1%) The series $\sum_{m=0}^{\infty} \frac{x^m}{m!}$ always converges.				
(3)	(1%) $det(\mathbf{A} + \mathbf{B}) = det(\mathbf{A}) + det(\mathbf{B}).$				
(4)	(1%) Given a 2×2 matrix A with determinant of 3, $det(2\mathbf{A}) = 6$.				
(5)	(1%) $f * 1 = f$, where * denotes convolution operator.				
(6)	(1%) div(curl \mathbf{v}) = 0, where \mathbf{v} is a vector.				

(7) (1%) Both A and B are $n \times n$ matrices, $(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$.

(8) (1%) A matrix and its transpose do not have the same rank.

(9) (1%) Given an invertible matrix **A**, $(\mathbf{A}^2)^{-1} = (\mathbf{A}^{-1})^2$

- (10) (1%) The determinant of an orthogonal matrix has value of 0.
- 2. (15%) Given $f(t) = \begin{cases} c, 0 < t < 1 \\ h(t), t > 1 \end{cases}$, where c is a constant and h(t) is a function. If the Laplace transform of f(t) is F(s). Find the Laplace transform of f(t+1) in terms of F(s).
- 3. (15%) Suppose that a cylindrical tank has diameter D. The top of the tank is open and a hole with diameter d at the bottom. (1) (10%) Find the height of water (h) in the tank at any time if the initial height of the water when the hole is opened is H. (2) (5%) When will the tank be empty?
- 4. (15%) Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, ..., \lambda_n$. Prove that (1) (5%) \mathbf{A}^{-1} has eigenvalues $1/\lambda_1, ..., 1/\lambda_n$; (2) (5%) \mathbf{A}^m (m = 1, 2, ...) has eigenvalues $\lambda_1^m, ..., \lambda_n^m$; (3) (5%) $\mathbf{A} k\mathbf{I}$ has eigenvalues $\lambda_1 k, ..., \lambda_n k$.
- 5. (15%) Solve the initial value problem, $x^2 y'' 3xy' + 3y = 2x^4 e^x$, y(1) = -2, y'(1) = -8 + 2e.
- 6. (15%) Given a cardioid $r = a(1 \cos \theta)$, where a > 0 is a constant and $0 \le \theta \le 2\pi$. (1) (8%) Find the area of this cardioid; (2) (7%) Find the perimeter of this cardioid.
- 7. (15%) Find the Fouries series of the function $f(x) = x^2$, $-\pi < x < \pi$, which is assumed to have the period of 2π .