※ 考生請注意：本試題不可使用計算機

1．Consider functions f and g that satisfy Laplace equation $\left(\nabla^{2} f=\nabla^{2} g=0\right)$ in some domain D containing a region T with boundary surface S such that T satisfies the assumptions in the divergence theorem．Prove
（a）$(8 \%) \iint_{S} g \frac{\partial g}{\partial n} d A=\iint_{T} \int|\operatorname{grad} g|^{2} d V$
（b）（4\％）If $\frac{\partial g}{\partial n}=0$ on S ，then g is constant in T ．
（c）$(8 \%) \iint_{S}\left(f \frac{\partial g}{\partial n}-g \frac{\partial f}{\partial n}\right) d A=0$ ．
Note：grad g means ∇g ．
2．（ 16% ）Evaluate the integral $I=2 \int_{0}^{\infty} \frac{\sin x}{x\left(a^{2}+x^{2}\right)} d x$ with $a>0$ using contour integral．

3．（a）（ 12% ）Find the solution of the initial－value problem
$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} u_{x x}-\infty<x<\infty, c$ is a constant．
$u(x, 0)=f(x)$
$u_{t}(x, 0)=g(x)$
This problem which has no boundaries describes the motion of an infinite string with given initial conditions and was solved by D＇Alembert．
（b）（ 8% ）obtain the solution $u(x, t)$ if
$f(x)=\left\{\begin{array}{ll}2 x & \text { if } 0<x \leq \frac{1}{2} \\ 2(1-x) & \text { if } \frac{1}{2}<x<1\end{array}\right\}, g(x)=0$, plot the displacement diagram in space at time $t=0, \frac{1}{2 c}, \frac{1}{c}$ ．

4．In steady equilibrium，the temperature field $T(r, \theta)$ in the circle $r<a$ is governed by Laplace＇s equation which can be expressed as
$\nabla^{2} T=T_{x x}+T_{y y}=T_{r r}+\frac{1}{r} T_{r}+\frac{1}{r^{2}} T_{\theta \theta}=0$ for $r<a$
If the temperature on the circumference can be specified as
$T(a, \theta)=f(\theta), 0 \leq \theta \leq 2 \pi$
（a）(12%) Solve this problem using separation of variables．
（b）(8%) The series obtained from（a）can be summed explicitly，which is known as Poisson＇s formula．Find this formula．

系所組別：水利及海洋工程學系甲，乙組
考試科目：工程數學 考試日期：0223，節次：3
※ 考生請注意：本試題不可使用計算機
5．(24%) Determine whether each statement is true or false related to linear algebra．If a statement is true，give a reason or cite an appropriate statement．If a statement is false，provide an example that shows that the statement is not true in all cases or cite an appropriate statement．（each question weighs 3% ）
（a）If the determinant of an $n \times n$ matrix \mathbf{A} is nonzero，the $\mathbf{A x}=0$ has only the trivial solution．
（b）An invertible square matrix \mathbf{A} is called orthogonal if $\mathbf{A}^{-1}=\mathbf{A}^{T}$ Then $\operatorname{det}(\mathbf{A})= \pm \mathbf{1}$ ．
（c）If \mathbf{x} is the eigenvector of $\mathbf{A} \mathbf{x}=\lambda \mathbf{x}$ with λ being eigenvalue，then the determinant of $\mathbf{A}-\lambda \mathbf{I}$ is zero．
（d）If \mathbf{A} and \mathbf{B} are nonsingular $n \times n$ matrices，then $\mathbf{A}+\mathbf{B}$ is a nonsingular matrix．
（e）For any matrix \mathbf{A} ，the matrix $\mathbf{A} \mathbf{A}^{T}$ is symmetric．
（f）If the matrices \mathbf{A}, \mathbf{B} ，and \mathbf{C} satisfy $\mathbf{A B}=\mathbf{A C}$ ，then $\mathbf{B}=\mathbf{C}$ ．
（g）If \mathbf{A} can be row reduced to the identity matrix，then \mathbf{A} is nonsingular．
（h）If \mathbf{A} is an $n \times n$ matrix，then \mathbf{A} is orthogonally diagonalizable and has real eigen－ values．
Note： $\operatorname{det}(\mathbf{A})$ stands for determinant of matrix $\mathbf{A}, \mathbf{A}^{T}$ is the transpose of $\mathbf{A}, \mathbf{A}^{-1}$ is the inverse of \mathbf{A} ，and \mathbf{I} is identity matrix．

