編號: 115	國立成功大學 102 學年度碩士班招生考試試題	共2頁,第1頁
系所組別:	水利及海洋工程學系甲、乙組	
考試科目:	流體力學	考試日期:0223,節次:2

※ 考生請注意:本試題不可使用計算機

1 (20%) When the velocity of a flow in an open rectangular channel of width w is relatively large, it is possible for the flow to "jump" from a depth h_1 to a depth h_2 over a relatively short distance, as shown in Fig. 1. Let g indicate the gravitational acceleration and assume that it is a horizontal uniform flow. Neglecting the drag present on the walls, please express h_2 in terms of h_1 , V_1 and g.

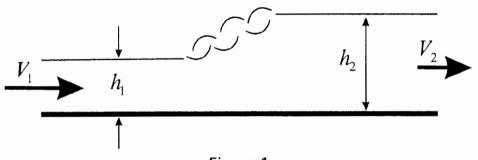


Figure 1

2 (22%) A nonviscous, incompressible fluid flows between wedge-shaped walls into a small opening as shown in Fig. 2. The velocity potential (in m^2/s) of the flow is given by $\phi(r) = -4 \ln r$. Please determine the volume rate of flow into the opening.

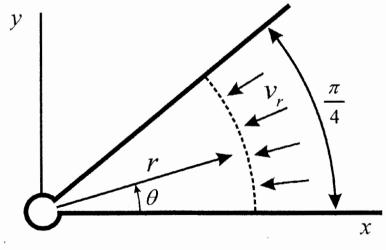
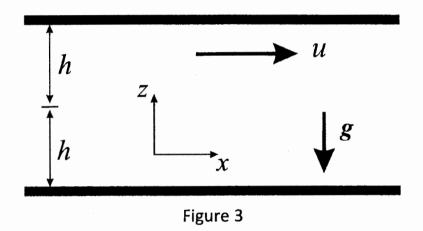



Figure 2

(背面仍有題目,請繼續作答)

編號: 115	國立成功大學 102 學年度碩士班招生考試試題	共2頁,第2頁
系所組別:水利		
考試科目:流體力學		考試日期:0223,節次:2
※考生請注意	· 本試題不可使用計算機	

- 3 (30%) Consider the viscous fluids.
 - (a) Letting the fluid density be denoted by ρ , and the dynamic viscosity by μ , please write down the incompressible Navier-Stokes equations in the Cartesian coordinate system O_{xyz} , where the gravity points downwards along the z-direction. (10%)
 - (b) Consider a two-dimensional flow of constant density between the two horizontal, infinite parallel plates as shown in Fig. 3. For this geometry the fluid particles move in the x-direction parallel to the plates, and there is no velocity in the z-direction. Once the pressure gradient in x-direction is given by $A = \partial p / \partial x$ and u = 0 at $z = \pm h$, please determine the velocity distribution u(z) in terms of A, μ and h at steady state. (20%)

- 4 (28%) Consider a fluid flow problem whose characteristic length is L, velocity V, density ρ , dynamic viscosity μ , kinematic viscosity ν . Let g denote the gravitational acceleration.
 - (a) Please express the Reynolds number (5%)
 - (b) Please express the Froude number (5%)
 - (c) What is the physical meaning of Reynolds number? (5%)
 - (d) What is the physical meaning of Froude number? (5%)
 - (e) By what kind of flows you have to take into account the Froude number? Why?(8%)