編號： 112
國立成功大學 103 學年度碩士班招生考試試題
共 2 頁，第 1 頁
系所組別：水利及海洋工程學系甲，乙組
考試科目：流體力學
考試日期：0222，節次：2
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．Consider the 2D steady viscous flows of streamline patterns around a vertical plate in the experiment，as illustrated in Fig 1a（for flow 1）and Fig 1b（for flow2）below．We mark four points A，B，C，D on the plate， two far－away points \mathbf{E}, \mathbf{F} and four surrounding regions I，II，III，IV in Fig 1c．Let $\mathbf{U}=$＝approaching flow velocity，$L=$ plate length，$t=$ plate thickness，$\mu=$ fluid viscosity，$\rho=$ fluid density．Please answer briefly：
（A）Define the best flow Reynolds number（Re）；What are flow directions possible in Figs 1a and 1b？Which is larger in Re between two flows？（5\％）
（B）In Fig 1a，the pattern is one of the Hele－Shaw flow．Why are the streamlines of this viscous flow similar to a potential flow of inviscid fluid？Explain．（5\％）
（C）In Fig 1b，what are the special flow features found at points B，D？What are points A \＆C called？Also， what is name of flow regions III and IV？Is this flow laminar or turbulent，why？（5\％）
（D）In Fig 1a，discuss the variation of velocity，acceleration（in both magnitude and direction）and pressure both along the streamline EA（5\％）and along the nearest streamline turning around point B（5\％）；
（E）Compare the drag and lift forces of two flows？What are these two forces coming from？（5\％）

Fig 1a．Streamlines of flow 1

Fig 1b．Streamlines of flow 2

Fig 1c．Notations

2．As shown in Fig 2a，a pipe system of diameter D and total length L（friction factor f ）with overall minor loss coefficient K_{L} connecting two large tanks of constant levels $\mathbf{z}_{1}, \mathbf{z}_{\mathbf{2}}\left(<\mathbf{z}_{1}\right)$ ．
（A）Determine the flowrate \mathbf{Q} in pipe；（ 5% ）
（B）Sketch the HGL and EL from tank A to tank B；（5\％）
（C）For engineering practice，the friction factor f is determined from the Moody chart（as Fig 2b）．Describe how the values of abscissa affect the value of f at various flow features；（5\％）What condition（s）of the pipe is considered as hydraulically smooth？（ 2% ）What condition（s）of the flow as wholly turbulent？（3\％）
（D）When flow in the pipe becomes fully developed，compare the flow velocity across the pipe section between lamina and turbulent flow；（5\％）What is the pressure varied along the pipe？（3\％）What the shear stress on the wall（2\％）

Fig 2a．Pipe system and two large tanks．Fig 2b．Moody chart（a reminding without showing information）
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
3．Discuss how a sphere in uniform motion is affected by its translation velocity，rotation speed and wall roughness．（15\％）（Hint：consider the effects on the drag and lift and various flow regimes，like laminar／turbulent flow and flow separation，etc．）

4．Newton＇s second law states that the nonzero net force is equal to the time variation of momentum of a particle．For a fluid particle of constant density（ $\rho=$ constant），the forces exerting on the particle are due to
 change is describe due to the variation of velocity (\vec{V}) at a fixed location (x, y, z) and time（ t ）by Eulerian viewpoint．According to these given properties of fluid and flow and express the variation in space by ∇ ， write down the vector forms of Newton＇s second law（per unit volume）term by term for：（A）the pressure force，（B）the viscous force，（C）the gravity force，（D）the accelerations（splitting the acceleration in parts of time and space variations．）（ 10% ）

5．In a tank of cross－area A filled with a liquid of specific weight γ_{1} ，we put a solid block of volume \forall and specific weight γ_{2} to raise the fluid level Δh ，as shown in Fig 5.
（A）Expressed Δh by given quantities．（10\％）
（B）How much does the weight of the tank increase．（5\％）
（C）If he tank is accelerated horizontally without the block，what is the acceleration required to equate the water height to $\Delta \mathrm{h}$ on the right side of tank wall？（5\％）

Fig 5．fluid tank and a solid block

