系所組別：水利及海洋工程學系甲，乙組

考試科目：工程數學
考試日期：0211，節次：3

第1頁，共1頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．（ 20% ）In an undamped mass－spring system，resonance occurs if the frequency of the driving force equals the natural frequency of the system and the model can be written as
$y^{\prime \prime}+\omega_{0}^{2} y=K \sin \omega_{0} t$ where $y(0)=y^{\prime}(0)=0$
Solve above equations using Laplace transform．
Hint：You may use the convolution integral theorem ： $\mathcal{L}^{-1}(F(s) G(s))=f * g$
2．(20%) Evaluate $I=\int_{0}^{\infty} \frac{d x}{1+x^{3}}$ using contour integral in the complex plane．
3．(30%) Considering the following heat problem in dimensionless variables
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-6 x, \quad 0<x<1, t>0$
BC＇s：$u(0, t)=0, u(1, t)=0, t>0$

$$
u(x, 0)=T_{0}, \quad 0<x<1,
$$

where $T_{0}>0$ is a constant．
Derive the solution $u(x, t)$ and find the steady－state（equilibrium）solution u_{E} ．
4．（20\％）（a）Complete the matrix \mathbf{A}（i．e．find a, b ）so that \mathbf{A} has eigenvectors $\vec{x}_{1}=(3,1)$ and $\vec{x}_{2}=(2,1)$ ：
$\mathbf{A}=\left[\begin{array}{ll}2 & 6 \\ a & b\end{array}\right]$
（b）Find a different matrix \mathbf{B} with those same eigenvectors \vec{x}_{1} and \vec{x}_{2} ，and with eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$ ．What is \mathbf{B}^{10} ？

5．(10%) Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at point $P:(2,1,3)$ in the direction of $\vec{a}=(1,0,2)$ ．

