科目:工程數學

每題 10 分共 10 題,必須列出計算過程

1. Solve the initial value problem

$$y''-4y'+4y=0$$
 $y(0)=3$; $y'(0)=1$

2. Find the Laplace transform of f(t)

$$f(t) = \begin{cases} 2t & \text{if } 0 < t < 2\\ 0 & \text{if } 2 < t < \pi\\ -\cos t & \text{if } t < \pi \end{cases}$$

3. Transform the following quardratic form to principle axes.

$$Q = 5x_1^2 + 24x_1x_2 - 5x_2 = 0$$

4. $\omega = f(x, y)$, $x = r \cos \theta$, $y = r \sin \theta$, Prove the following identity.

$$\omega_{rr} + \frac{1}{r}\omega_r + \frac{1}{r^2}\omega_{\theta\theta} = \omega_{xx} + \omega_{yy}$$

5. Evaluate the integral

$$\int_{(0,2,1)}^{(2,0,1)} ze^x dx + 2yz dy + (e^x + y^2) dz$$

6. Find the Frurier transform of the following function.

$$r(t) = \begin{cases} t + \frac{\pi}{2}, -\pi < t < 0 \\ -t + \frac{\pi}{2}, 0 < t < \pi \end{cases}, r(t + 2\pi) = r(t)$$

7. Evaluate the integral

$$\oint_{c} \frac{\tan z}{z^{2} - 1} dz \quad c: |z| = 2 (counterclockwise)$$

(背面仍有題目.請繼續作答)

編號 9 207 系所:水利及海洋工程學系甲組, 7 22 科目:工程數學

8. Consider a square vibrating membrane for which a=b=1 as shown in Fig.1.The eigenvalues are obtained by

$$\lambda_{mn} = c\pi\sqrt{m^2 + n^2} \qquad (1)$$

where $c^2 = T/\rho$, T = the tension force, $\rho =$ the mass of the membrane per unit area. The eigenfunctions of the vibrating membrane is given by

$$u_{mn}(x, y, t) = (B_{mn}\cos\lambda_{mn}t + B_{mn}^*\sin\lambda_{mn}t)F_{mn}(x, y) \qquad (2)$$

in which

$$F_{mn}(x,y) = \sin \frac{m\pi x}{a} \sin \frac{n\pi x}{b}$$
 (3)

Plot the nodal lines of the solutions $u_{11}, u_{12}, u_{21}, u_{22}, u_{13}$ and u_{31} .

Fig. 1 Rectangular membrane

- 9. Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point p:(2,1,3) in the direction of the vector $\vec{a} = \vec{i} 2\vec{k}$.
- 10. Find the radius of convergence and center of the power series

$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z - 3i)^n$$