細號 121

國立成功大學九十九學年度碩士班招生考試試顯

共 / 頁,第/頁

系所組別 水利及海洋工程學系甲、乙組

考試科目 工程數學

新村日期:0307、新井:3

※ 考生請注意:本試題 □可 ☑不可 使用計算機

- (30%) Consider line integrals Γ = ∫_c F · dr = ∫_c F · dr + F₂ dy, where F = (F₁, F₂) = (⁻²⁄_{x²y²}, ⁻²⁄_{x²x²y²}, r = (x, y) is a position vector, and C : x² + y² = 1 oriented counter-clockwise.
 - (a) Calculate Γ directly.
 - (b) State the Stokes theorem for transformation between surface and line integrals.
 - (c) Can you apply Stokes theorem to obtain the results from (a)? State clearly the reason why?

Note: The expression " · " represents the dot product.

- 2. (15%) Evaluate \oint cot zdz, where the contour C is the circle |z|=4.
- (25%) The Dirichlet problem for the exterior of a circle (radius=a) that satisfies the Laplace equation is

$$\nabla^2 u = u_{xx} + u_{yy} = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
 for $x^2 + y^2 > a^2$

BC's: $u(a, \theta) = h(\theta)$

- $u \ \text{ is bounded as } x^2+y^2 \to \infty$
- (a) Solve this problem using separation of variables.(b) The series obtained from (a) can be summed explicitly, which is known as Poisson's
- (b) The series obtained from (a) can be summed explicitly, which is known as rosson formula. Find this formula.
- 4. (30%) Determine whether each statement is true or false. If a statement is true, give a reason. If a statement is false, provide an example that shows that the statement is not true in all cases or cite an appropriate statement. Note in the following the x and b are column vectors and "det" means "determinant"
 - (a) For any matrix A, the matrix AA^T is symmetric.
 - (b) If the matrices A, B, and C satisfy AB=AC, then B=C.
 - (c) If A can be row reduced to the identity matrix, then A is nonsingular.
 - (d) If A is a square matrix, then the system of linear equations Ax=b has a unique solution.
 - (e) The determinant of a square matrix A is a nonzero scalar.
 - (f) If A is a 3×3 matrix with det(A) = 5, then det(2A) = 10.
 - (g) If ${\bf A}$ and ${\bf B}$ are nonsingular $n \times n$ matrices, then ${\bf A} + {\bf B}$ is a nonsingular matrix.
- (h) If the determinant of an n × n matrix A is nonzero, then Ax = 0 has only the trivial solution.
 - (i) An invertible square matrix A is called orthogonal if $A^{-1} = A^T$ Then $det(A) = \pm 1$
- (j) If x is the eigenvector of Ax = λx with λ being eigenvalue, then the determinant of A λI is zero.