編録: 117

國立成功大學九十九學年度碩士班招生考試試顧

共号頁 第/頁

系所組別 水利及海洋工程學系甲組

考試科目: 水文學

季就日期: 0307· 節次: 1

※ 考生請注意:本試題 □ □ □ 不可 使用計算機

Let us consider two basins and assume the precipitation pattern to be mainly orographic. Basin A is near
the coastline and the ground elevation is relatively flat. Basin B is at the slope of the mountain range
where the ground elevation changes significantly. Answer the following two questions: (Please state the
critical points and do not spend much time on detailed descriptions.)

(a) [5 pts] Which of the two methods: Thiesson Polygon Method, and Isohyetal Method would you use to obtain the areal precipitation for Basin A and why? Which method would be used for Basin B and why? (b) [5 pts] Which basin would be better suited for the application of the Unit Hydrograph method and why?

Consider a region in which infiltration capacity (units of in/hr) is well-approximated by the Horton equation:

$$f(t) = f_a + (f_a - f_a)e^{-kt}$$

and cumulative infiltration (in inches) under potential infiltration is given by:

$$F(t) = \int f(t)dt$$

At the onset of a storm, it rains for three hours at the rate of 0.45 inches per hour. Abruptly, the storm picks up and during the fourth hour rain falls at the rate of 1 inch per hour. In answering the following questions, you may find some of the following results useful as a supplement to your own calculations:

F(1.0 hr) = 1.35 inches

F(2.0 hr) = 2.18 inches

F(3.0 hr) = 2.75 inches

F(4.0 hr) = 3.19 inches

- (a) [10 pts] During the fourth hour, is infiltration capacity-controlled or precipitation-controlled? How much infiltration occurs during this hour?
- (b) [10 pts] Do you expect runoff to occur at any time during the four hours? If so, when and how much?

総號: 117

國立成功大學九十九學年度碩士班招生考試試顯

共 3 頁·第2頁

系所組別 · 水利及海洋工程學系甲組

考試科目: 水文學

李號日期:0307, 節次:1

※ 考生請注意:本試題 □ □ 不可 使用計算機

3. A basin has flood characteristics (annual maximum runoff) which are well-described by the corrected Pearson Type III model (see table below of frequency factors K) with average = 4000 cfs, standard deviation S = 3500 cfs and skew coefficient S = 23

	Recurrence Interval in Years							
Skew	2	5	10	25				
Coefficient	Percent Chance of Exceeding							
Sc	50	20	10	4 2.272				
2.7	-0.376	0.479	1.224					
2.6	-0.368	0.499	1.238	2.267 2.262 2.256 2.248				
2.5	-0.360	0.518	1.250					
2.4	-0.351	0.537	1.262					
2.3	-0.341	0.555	1.274					
2.2	-0.330	0.574	1.284	2.240 2.230				
2.1	-0.319	0.592	1.294					

- (a) [5 pts] What is the magnitude of the 5-year flood?
- (b) [5 pts] What is the probability that at least one such flood will happen in a five year interval?
- (c) [5 pts] What is the magnitude of the 1-year flood?
- 4. The two following Unit Hydrograph Curves A and B were derived for the same basin. One was for natural condition and the other is for the current condition after the urban development.

- (a) [5 pts] Which curve is more likely to be derived from the current condition after urban development?
- (b) [5 pts] Which curve will have greater area under the curve?

編號: 117

國立成功大學九十九學年度碩士班招生考試試題

共子頁,第子頁

系所組別 · 水利及海洋工程學系甲組

考試科目 水文學

考試日期:0307·新才:1

※ 考生請注意:本試顯√可 □不可 使用計算機

5. Given the following three-hour duration Unit Hydrograph (based on one inch of runoff) from a basin,

Time (hours)	0	2	4	6	8	10	12
cfs	0	0.7	1	1.5	0	0	0

- (a) [10 pts] Determine a two-hour duration Unit Hydrograph?
- (b) [10 pts] Determine the runoff from the outlet of the basin by the following rainfall pattern [0-3 hours => 1.5 in/hour; and 4-6 hours => 2 in/hour]
- (c) [10 pts] What is the approximate area of this basin?
- 6. Flow routing is a procedure to determine the time and magnitude of flow at a point, which is typically characterized into the lumped system routing and the distributed one. In the latter, the Saint-Venant equation were developed to describe one-dimensional unsteady open channel flow (neglecting lateral inflow, wind shear, and eddy losses), which takes the form

$$\frac{1}{A}\frac{\partial Q}{\partial t} + \frac{1}{A}\frac{\partial}{\partial r}(\frac{Q^2}{A}) + g\frac{\partial y}{\partial r} - gS_0 + gS_f = 0,$$

where Q, A, and y denote flow discharge, the area, and water level, respectively.

- (a) [6 pts] Please define the physical meaning of each of five terms in the above equation.
- (b) [9 pts] Based on this equation, please identify the kinematic, diffusion, and dynamic models, respectively, (i.e. how many terms should be included in these models, respectively?)