- A shear wall in a reinforced concrete building is subjected to a vertical load q and a horizontal force H, as shown in Fig. 1. As a consequence, the stresses at point A on the surface of the wall have compressive stress equal to 1400 MPa due to q and shear stress equal to 240 MPa due to H.
 - Determine the principal stresses by the Mohr Circle Method and show them on a sketch of a properly oriented element. (20%)
 - b) If the shear wall has very little resistance to tensile stress, what will be the cracking angle in the above loading? Show it in a graph. (10%)

 Fig. 2 shows a bracket under a loading P. Determine the resultant normal stresses at A and B when the applied load P = 10 kips. (20%)

- 3) Explain the following terms in less than 100 words each. (Chinese is acceptable and figures may be used) (30%)
 - a) Strain Hardening
 - b) Bifurcation Point
 - c) Resonance
 - d)Neutral Axis
 - e) Euler Load
- 4) Solve the following math problems. (20%)
 - a) The inverse matrix of

b) The solution of