系所組別：航空太空工程學系乙組

考試科目：工程力學

※ 考生請注意：本試題 \downarrow 可 \square 不可 使用計算機

（1）(15%) A baseball is thrown with spin so that three concurrent forces act on it as shown in the following figure．The weight W is 1.4 N ，the drag D is 0.45 N ，and the lift L is perpendicular to the velocity \mathbf{v} of the ball．If it is known that the y－component of the resultant is -1.5 N and the z－component is -0.24 N ， determine L, θ and R ．

（2）（ 10% ）The roof truss is composed of $30^{\circ}-60^{\circ}$ right triangles and is loaded as shown below．Compute the forces in members $B H$ and $H G$ ．

（3）(15%) The beam is subjected to the two similar loadings shown below where the maximum intensity of loading，in force per unit length，is w_{0} ．Derive expressions for the shear V and m mment M in the beam in terms of the distance x measured from the center of the beam．

（背面仍有題目，請繼續作答）

系所組別：航空太空工程學系乙組

考試科目：工程力學

※ 考生請注意：本試題 《可 \square 不可 使用計算機

（4）（20\％）Crank $C B$ oscillates about C through a limited arc，causing crank $O A$ to oscillate about O ．When the linkage passes the position shown with $C B$ horizontal and $O A$ vertical，the angular velocity of $C B$ is $2 \mathrm{rad} / \mathrm{s}$ counterclockwise． For this instant，determine the angular velocities and angular accelerations of $O A$ and $A B$ ．

（5）（20\％）The chain is released from rest with the length b of overhanging links just sufficient to initiate motion．The coefficients of static and kinetic friction between the links and the horizontal surface have essentially the same value μ ． Neglect any friction at the corner．
（1）Determine the velocity u of the chain when the last link leaves the edge by using Newton＇s Law of motion．
（2）Determine the velocity u of the chain when the last link leaves the edge by using conservation of mechanical energy．
（3）How much time does it take？

（6）（20\％）The uniform $12-\mathrm{kg}$ square panel is suspended from point C by the two wires at A and B ．If the wire at B suddenly breaks，calculate the tension T in the wire at A an instant after the break occurs．

