編號:

148

國立成功大學一○○學年度碩士班招生考試試題

共 2 頁,第/頁

系所組別: 航空太空工程學系甲乙丙丁組

考試科目: 工程數學

考試日期:0219,節次:3

※ 考生請注意:本試題 ▽可 □不可 使用計算機

1. Solve the following equations.

10%(a).
$$y'(x) = \frac{3x^2 - y}{x - 1}$$
, $y(0) = 0$, $y(x) = 9$

10%(b).
$$y'' - 2y' + 2y = \sin x$$
, $y(0) = -\frac{2}{5}$, $y'(0) = -\frac{1}{5}$, $y(x) = ?$

2.

10%(a). Is the following set of vectors linearly independent or dependent. (Show the details of your work.)

$$v_1 = \begin{bmatrix} 3 & 0 & 2 & 2 \end{bmatrix}^T$$
, $v_2 = \begin{bmatrix} -6 & 42 & 24 & 54 \end{bmatrix}^T$, $v_3 = \begin{bmatrix} 21 & -21 & 0 & -15 \end{bmatrix}^T$

10%(b). Suppose that $f(x^*, y^*)$ is the local minimum of the function

$$f(x,y) = x^2 - 4xy + y^3,$$

what is the local minimizer (x^*, y^*) ?

- 3. (a). Given a trajectory represented by $\bar{r}(t)$, determine the velocity $\bar{V}(t)$ and the acceleration $\bar{a}(t)$ by using the vector differentiation. Express them with \dot{s} (the speed along the tangent direction), \ddot{s} (the acceleration along the tangent direction), ρ (the radius of curvature), \bar{e}_i and \bar{e}_n (the unit vectors along the tangential and normal directions, respectively). (10%)
 - (b). Determine the integral, $\int_{\vec{r}_o}^{\vec{r}_d} \vec{V} \cdot d\vec{r}$, where $\vec{V} = 3y\vec{i} 2x\vec{j}$, and \vec{r} represents the line beginning from point O, passing through point B, and ending at point A as shown in the following figure. \vec{i} and \vec{j} are the unit vectors along x and y axes, respectively. (10%)

(背面仍有題目,請繼續作答)

編號:

148

國立成功大學一○○學年度碩士班招生考試試題

共 2頁,第7頁

系所組別: 航空太空工程學系甲乙丙丁組

考試科目: 工程數學

考試日期:0219,節次:3

※ 考生請注意:本試題 ☑可 □不可 使用計算機

4. (a) (6%)

Classify the following partial differential equation (PDE) to be elliptic, parabolic, or hyperbolic PDE:

$$2u_{xx} + 10u_{xy} + 8u_{yy} + xu_x - yu_y = 0$$

(b) (14%)

Classify the Sturm-Liouville problem as regular, periodic, or singular; find the eigenvalues and corresponding eigenfunctions.

i)
$$y'' + \lambda y = 0$$
; $y(0) = 0, y'(4) = 0$

ii)
$$y'' + \lambda y = 0$$
; $y(0) = y(4), y'(0) = y'(4)$

5. Consider the function of complex variable

$$f(z) = \frac{1}{z^2(1 - e^z)}$$

- (a). Identify all singular points for f(z). (6%)
- (b). Evaluate the following integral using the Residue Theorem

$$\oint_C f(z)dz$$

where C is the circle |z| = 1. (10%)

(c). If C is the circle |z| = 6, will the result in (b) change? (4%)