펪	Ť.	影	ъħ	¥	墨	(\cap	-	墨	年	度	碽	t	班	扨	4	¥	뷼	tt.	H
24	ز سکلہ	ΠX.	71	ハ			\smile	_	-	Т	132	~ 72		- 24	70		~	- 100	1000	703

系所組別: 航空太空工程學系丙組 考試科目: 自動控制

142

编號:

- 1. What is the dominant pole of an automatic control system and how does it relate to the system time constant? (10%)
- 2. Consider a dynamic system represented by the following transfer function.
 - a. Derive the time response y(t) for a unit step input. (10%)
 - b. From the response in b., explain it is a non-minimum phase system. (5%)

 $\frac{Y(s)}{R(s)} = \frac{s-4}{(s+2)^2}.$

- 3. Consider a dynamic system modeled by the following set of differential equations,
 - $\dot{x}_1 = -4x_1 + x_2, \ \dot{x}_2 = -3x_2 + x_3, \ \dot{x}_3 = -2x_3 + u, \ y = x_1.$
 - a. Let U(s)/(R(s)-Y(s))=Gc(s), where R(s) is an input and Gc(s) is a controller.
 Draw the block diagram representing the feedback control system and find the transfer function of Y(s)/R(s). (10%)
 - b. Gc(s)=K(s+ α)/s For K>O and α >0, mark the area on K- α plane where the control system is stable. (15%)

4.20%

Plot the Bode and Nyquist plot for the system with transfer function $G(s) = \frac{(s-10)}{s^2(s+10)}$.

(背面仍有題目,請繼續作答)

编號: 142 國立成功大學一〇一學年度碩士班招生考試言	式题 共 2頁,第 2 頁
系所組別: 航空太空工程學系丙組 考試科目: 自動控制	考試日期:0225,節次:
5. 30% (2% for each matching pair) Match each item in the left column to the corresponding item in the r Format of the Answer: (number) : Character, e.g. (1): A	ight column.
(1). The property of a linear system in which the system response, y(t), to an	A. Poles
input $u(t)$ leads to the response $Ay(t)$ when the input is $Au(t)$.	B. Final value law
(2). The case where the damping ratio $\zeta > 1$.	C. Unity feedback
(3). The law that states that if two inputs are scaled and summed and routed	D. S plane
through a linear, time-invariant system, then the output will be identical	E. Breakaway point
to the sum of outputs due to the individual scaled inputs when routed	F. Time constant
through the same system.	G. Homogeneity
(4). The input to a control system often representing the desired output.	H. Principle of
(5). The value that the output achieves after all the transient constituents of the	Superposition
response have faded.	I. Reference input
(6). A widely-used compensator that possesses one zero and one pole with the	J. Overdamped
zero closer to the origin of the <i>s</i> plane.	K. Zeros
(7). The steady-state response of a system to a sinusoidal input signal.	L. Linearized
(8). All the zeros of a transfer function lie in the left-hand side of the s -plane.	M. Frequency response
(9). A nonminimum phase system that passes all frequencies with equal gain.	N. Phase-lag network
(10). A chart displaying the curves for the relationship between the open-loop	O. Phase-lead
and closed-loop frequency response.	compensator
(11). The frequency at which the frequency response has declined 3 dB from its	P. Phase margin
low-frequency value.	Q. Gain Margin
(12). The increase in the system gain when phase =-180° that will result in a	R. Nichols chart
marginally stable system with intersection of the -1+j0 point on the	S. Bode chart
Nyquist diagram.	T. Phase-lead network
(13). The point on the real axis where the locus departs from the real axis of the	U. Steady state
s-plane.	V. Angle of departure
(14). The angle at which a locus leaves a complex pole in the <i>s</i> -plane	W. Bandwidth
(15). A network that provides a positive phase angle over the frequency range	X. Minimum phase
of interest.	Y. All-pass network
	Z Phase-lag