編號: 140	國立成功大學 102 學年度碩士班招生考試試題	共 2 頁,第1頁
系所組別:航空太	空工程學系丙組	
 考試科目:動力學		考試日期:0223,節次:2

※考生請注意:本試題不可使用計算機

- 1. A particle of mass *m* is projected vertically upward at z=0, with an initial velocity v_0 . Assuming for an upward velocity $v \ge 0$, there is a square-law drag force bv^2 , where *b* is constant. Express *v* as a function of the vertical displacement and find the maximum height of the particle. (20%)
- Particles m₁=2m and m₂=m can slide without friction on parallel fixed horizontal wires separated by a distance h. A spring of stiffness k and unstressed length h connects the two particles. If m₁ has an initial velocity v₀, m₂ is initially motionless, and the spring is initially unstressed, find: (a) the maximum velocity v₂ of m₂; (b) the maximum stretch δ of the spring. (30%)
- 3. Consider the system shown below, where mass m is a magnetic bar and is sliding in a solenoid that is mounted on a cart of mass M. Let x₁ and x₂ be the absolute positions of M and m, respectively. A force F is applied to m in the positive x₂ direction if a positive voltage V is applied to the solenoid, and F=μV, where μ is a constant. For simplicity, let μ=1. Suppose friction is negligible.

- a. Derive the governing equation of the system. (4%)
- b. At this moment both M and m are still at the position (x₁, x₂) = (0,0). You are asked to design V(t) to move both masses to the position (x₁, x₂) = (1,1) in 10 seconds. Please design V(t), or, explain why you cannot do it? (8%)

(育山仍有題目,請繼續作答)

編號: 1	40 國立成功大學 102 學年度碩士班招生考試試題	共	2	頁,	第 2	頁
系所組別:航空太空工程學系丙組						
考試科目:動力學考試日期:0223.節次:			: 2			
※ 考生請	注意:本試題不可使用計算機					
4. A 12kg uniform rectangular block with mass center O is shown below. At this moment, point O has a						
velocity $\overline{V} = 2\hat{i} + 3\hat{j}$ m/s, and the block is rotating with an angular velocity $\overline{\omega} = 1\hat{i} + 1\hat{j} + 1\hat{k}$ rad/s.						

- a. Find the inertia matrix of the block with respect to the frame (x, y, z). (3%)
- b. Find the moment of inertia about the axis \overline{AB} . (7%)
- c. Find the angular momentum of the block. (3%)
- d. A force $\overline{F} = 1$ î N is applied at corner A. Find the acceleration at corner C. (15%)
- e. At this moment, what is the power delivered to the block by the force \overline{F} ? (10%)

