考試科目：動力學

※ 考生請注意：本試題不可使用計算機
1．A particle of mass m is projected vertically upward at $\mathrm{z}=0$ ，with an initial velocity v_{0} ．Assuming for an upward velocity $v \geq 0$ ，there is a square－law drag force $b v^{2}$ ，where b is constant．Express v as a function of the vertical displacement and find the maximum height of the particle．（20\％）

2．Particles $m_{l}=2 m$ and $m_{2}=m$ can slide without friction on parallel fixed horizontal wires separated by a distance h ．A spring of stiffness k and unstressed length h connects the two particles．If m_{l} has an initial velocity $v_{0,}, m_{2}$ is initially motionless，and the spring is initially unstressed，find：（a）the maximum velocity v_{2} of $m_{2 \text { ；}}$（b）the maximum stretch δ of the spring．（30\％）

3．Consider the system shown below，where mass m is a magnetic bar and is sliding in a solenoid that is mounted on a cart of mass M ．Let x_{1} and x_{2} be the absolute positions of M and m ，respectively．A force F is applied to m in the positive x_{2} direction if a positive voltage V is applied to the solenoid，and $F=\mu V$ ， where μ is a constant．For simplicity，let $\mu=1$ ．Suppose friction is negligible．

a．Derive the governing equation of the system．（4\％）
b．At this moment both M and m are still at the position $\left(x_{1}, x_{2}\right)=(0,0)$ ．You are asked to design $V(t)$ to move both masses to the position $\left(x_{1}, x_{2}\right)=(1,1)$ in 10 seconds．Please design $V(t)$ ，or，explain why you cannot do it？（8\％）

編號： 140
※ 考生請注意：本試題不可使用計算機
4．A 12 kg uniform rectangular block with mass center O is shown below．At this moment，point O has a velocity $\overline{\mathrm{V}}=2 \hat{\mathrm{i}}+3 \hat{\jmath} \mathrm{~m} / \mathrm{s}$ ，and the block is rotating with an angular velocity $\bar{\omega}=1 \hat{\mathrm{i}}+1 \hat{\jmath}+1 \hat{\mathrm{k}} \mathrm{rad} / \mathrm{s}$ ．
a．Find the inertia matrix of the block with respect to the frame $(x, y, z) .(3 \%)$
b．Find the moment of inertia about the axis $\overline{\mathrm{AB}}$ ．（7\％）
c．Find the angular momentum of the block．（3\％）
d．A force $\overline{\mathrm{F}}=1 \hat{\jmath} \mathrm{~N}$ is applied at corner A．Find the acceleration at corner C．（15\％）
e．At this moment，what is the power delivered to the block by the force $\overline{\mathrm{F}}$ ？(10%)

