※ 考生請注意：本試題不可使用計算機

1． 20% ）Let \boldsymbol{x} be an eigenvector of both \boldsymbol{A} and \boldsymbol{B} matrices．Is \boldsymbol{x} also an eigenvector of （ $A-\alpha B$ ），where $\alpha \in R$ ？Explain．

2． 20% ）
（a）Find the general solution to the following equation：$\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+4 y=8 e^{2 t}$ ．
（b）Find the solution to the above equation for $y(0)=3$ and $\left.\frac{d y}{d t}\right|_{t=0}=4$ ．
3． 20% ）
（a）（ 10% ）Let Σ be a piecewise smooth closed surface bound a region M ．Show that volume of $M=\frac{1}{3} \iint_{\Sigma} \vec{R} \cdot \vec{n} d A$ ，where $\vec{R}=x \vec{i}+y \vec{j}+z \vec{k}$ and \vec{n} is the surface normal of Σ ．
（b）(10%) Find the work done by the force $\vec{F}=8 x y^{3} z \vec{i}+12 x^{2} y^{2} z \vec{j}+4 x^{2} y^{3} \vec{k}$ acting along the helix $\vec{r}(t)=2 \cos (t) \vec{i}+2 \sin (t) \vec{j}+t \vec{k}$ from $(2,0,0)$ to $(0,2, \pi / 2)$ ．

4． 20% ）Use the Fourier series method to solve the problem：

$$
\begin{aligned}
& u_{t}=4 u_{x x} \quad 0<x<2, t>0 \\
& u(0, t)=u(2, t)=0, \quad t>0 \\
& u(x, 0)=2[1-\cos (4 \pi x)], \quad 0<x<2
\end{aligned}
$$

5． 20% ）Consider the function of complex variable

$$
f(z)=\frac{e^{a z}}{\left(e^{z}+1\right)}, \quad 0<a<1
$$

（a）Locate the singularities and evaluate the residues of $f(z)$ ．
（b）．Evaluate the following integral using the Residue Theorem

$$
I=\int_{-\infty}^{\infty} \frac{e^{a x}}{e^{x}+1} d x, \quad 0<a<1
$$

