※ 考生請注意：本試題不可使用計算機

1．A gas－filled pneumatic strut in an automobile suspension system behaves like a piston－cylinder apparatus．At one instant when the piston is $L=0.15 m$ away from the closed end of the cylinder，the gas density is uniform at $\rho=18 \mathrm{~kg} / \mathrm{m}^{3}$ and the piston begins to move away from the closed end at $\mathrm{V}=12 \mathrm{~m} / \mathrm{s}$ ． Assume as a simple model that the gas velocity is one－dimensional and proportional to distance from the closed end；it varies linearly from zero at the end to $u=V$ at the piston．Find the rate of change of gas density at this instant．Obtain an expression for the average density as a function of time．\quad（20\％）

2．Consider the simplified momentum equation shown below for a steady，incompressible flow with constant viscosity and negligible body forces．The problem has a characteristic length scale L and velocity scale U ．

$$
\underbrace{\rho\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)}_{A}=\underbrace{-\frac{\partial p}{\partial x}}_{B}+\underbrace{\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)}_{C}
$$

Determine the proper non－dimensionalization of the pressure if（a）term $A \approx 0$
And if (b) term $C \approx 0$ ．Provide real world examples when this might be the case．

3．Answer the following questions：（20\％）
（1）What conditions are necessary before you can use a stream function to solve for the flow field？（5\％）
（2）What conditions are necessary before you can use a potential function to solve for the flow field？（5\％）
（3）What conditions are necessary before you can apply Bernoulli＇s Equation to relate any two points in a flow field？（5\％）
（4）Under what conditions does the circulation around a closed fluid line remain constant with respect to time？（5\％）
※ 考生請注意：本試題不可使用計算機

4．Consider a steady velocity field $\overrightarrow{\mathrm{V}}=(\mathrm{u}, \mathrm{v})=\left(\mathrm{x}^{2}+\mathrm{y}^{2},-2 x y\right)$ where (u, v) are the Cartesian velocity components and (x, y) is the position in Cartesian system．A triangular path C passing through $(0,0),(1,0)$ and $(1,2)$ is shown in the attached Figure A．
（a）Verify whether this velocity field is compressible or incompressible．
（b）Verify whether this velocity field is rotational or irrotational．
（c）Calculate the circulation $\Gamma=\oint_{\mathrm{C}} \overrightarrow{\mathrm{V}} \cdot \mathrm{d} \overrightarrow{\mathrm{r}}$ along path C in counter－clockwise direction as shown in Figure A ．

Figure A
※ 考生請注意：本試題不可使用計算機

Problem 5 （20\％）

Consider a vane cascade struck by a continuous jet of water that leaves a nozzle，which has an exit cross－sectional area A ， with a jet speed V．The vanes move with a constant speed U．Note that all the mass flow leaving the jet crosses the vanes．The curvature of the vanes are described by angles Θ_{1} and Θ_{2} ，as shown．Evaluate the nozzle angle，α ， required to ensure that the jet enters tangent to the leading edge of each vane（ 10% ）．Calculate the force that must be applied to maintain the vane speed constant（ 10% ）．

