系所組別：航空太空工程學系丙組

考試科目：自動控制

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．Consider the system transfer function given below，

$$
\frac{Y(s)}{R(s)}=\frac{2 s+8}{s^{2}+4 s+8} .
$$

a．Find the response $y(t)$ if $R(s)$ is a unit step input．（15\％）
b．Derive peak time and percent overshoot of $y(t)$ obtained in a．（10\％）

2．Consider a unity feedback control system with forward controller $\boldsymbol{G}_{c}(s)$ and plant $G_{p}(s)$ ，where
$G_{c}(s)=\frac{K(s+z)}{s}$ and $\quad G_{p}(s)=\frac{1}{(s+2)^{2}(s+4)}$.
a．For $K>0$ and $z>0$ ，specify the area where the system is stable on $K-z$ plane with z being horizontal axis．（15\％）
b．If $z=3$ ，find the system poles and the associated K when the system is marginally stable．（ 10% ）

系所組別：航空太空工程學系丙組

考試科目：自動控制

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。 3.

Consider the system shown in Fig．3－1．
（a）．Determine the magnitude and phase of $\mathrm{G}\left(\mathrm{s}^{*}\right), s^{*}=-2+. j 2 \sqrt{3} .(5 \%)$
（b）．Apply the phase condition of root locus to determine the coefficients of the controller（ p and K ）， as shown in Fig．3－2，such that s＊becomes the resulting closed－loop pole．（10\％）
（Answer obtained using the comparing coefficient approach will not score）
（c）．Sketch the root locus with p obtained in（b）for $\mathrm{K}>0$ ．（10\％）

Fig．3－1

Fig．3－2
4.
（a）．Determine the system transfer function $\mathrm{G}(\mathrm{s})$ for a minimum phase system with its Bode gain plot shown in Fig 4－1．（7\％）
（b）．Plot the Nyquist plot of system $\mathrm{G}(\mathrm{s})$ and the Nyquist \mathfrak{D} contour．（10\％）
（c）．Consider system G（s）obtained in 4（a）．Determine steady state errors of the unity feedback system，as shown in Fig．4－2，corresponding to a unit－step and unit－ramp reference input， respectively．（8\％）

Fig．4－1

Fig．4－2

