1．（20\％）A particle having a mass m and a velocity v_{m} in the y direction is projected onto a horizontal belt that is moving with a uniform velocity v_{b} in the x direction．There is a coefficient of sliding friction μ between the belt and the particle．Assuming that the particle first touches the belt at the origin of the fixed $x y$ coordinate system and remains on the belt，find the coordinate (x, y) of the point where sliding stops．

2．（30\％）Three masses are of the same mass，m ．Mass m_{1} hits m_{2} with inelastic impact（ $e=0$ ）while sliding horizontally with velocity v along the common line of centers of the three equal masses．Initially，masses m_{2} and m_{3} are stationary and the spring is unstressed．Find
（a）The velocities of m_{1}, m_{2} ，and m_{3} immediately after impact；
（b）The maximum kinetic energy of m_{3} ；
（c）The minimum kinetic energy of m_{2} after impact；
（d）The maximum compression of the spring；
（e）The final motion of m_{1} ．

Frictionless

系所組別：航空太空工程學系丙組
考試科目：動力學
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
3．Derive the equations of motion or the dynamic model of the spring－bar system as shown in figure 3 ．The length and the mass of the slender uniform bar are land m ，respectively．Also，spring constant is K ．（ 25% ）

Figure 3

4．Consider the rotating thin disc system in figure 4.
a．Derive the angular momentum of the thin disc for constant ω_{1} and ω_{2} ． Also，the mass of the disc is m ．（15\％）
b．What is the torque at O on the disc？(10%)

Figure 4

