※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．(20%) For equation $e^{z}=i$ ，considering $z=a+i b$ is a complex variable，where a and b are real numbers．
（a）Find all the solutions of a and b to the above equation，and
（b）Find the modulus and argument of z ．

2．(20%) At a point P_{1} located at $(3,2,-5)$ in space，suppose we have another point P_{2} at $(4,-2,6)$ ．Determine the followings：
（a）the unit direction vector from P_{1} to $P_{2}(5 \%)$ ；
（b）the gradient of $F(x, y, z)=y e^{x} \mathbf{i}+(x+y) z \mathbf{j}+z^{2} x \mathbf{k}$（i．e．$\nabla F(x, y, z)$ ），where （ $\mathbf{i}, \mathbf{j}, \mathbf{k}$ ）is the unit basis vector of the Cartesian coordinate system（5\％）；
（c）the gradient of F at $P_{1}(5 \%)$ ；
（d）direction derivatives of the function $F(x, y, z)$ at P_{1} in the direction of $P_{2}(5 \%)$ ．
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

3．(20%) Consider a data set listed below：

$$
(0,6),(2,8),(6,9),(10,12)
$$

（a）Find the linear function，$y=a x+b$ ，by least square method to approximate the data relation，x as input and y as output．（13\％）
（b）Give a formula or an equation which could be used to estimate the average error in percentage for the function in a．（7\％）

4．（20\％）Define the Fourier transform of a function $f(x)$ as

$$
\mathbf{F}[f(x)] \equiv F(\omega) \triangleq \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

（a）Given $f(x)=\left\{\begin{array}{cc}e^{-a x}, & x \geq 0 \\ 0, & x<0\end{array}(a>0)\right.$ ，find its Fourier transform $F(\omega)$ ．
（b）Define the convolution integral of two functions $f(x)$ and $g(x)$ as

$$
[f * g](x) \triangleq \int_{-\infty}^{\infty} f(x-\xi) g(\xi) d \xi
$$

Prove the Fourier convolution theorem：

$$
\mathbf{F}[f * g] \equiv F(\omega) G(\omega)
$$

5．20\％）

a）Find the radius of convergence and interval of convergence：
i）$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(x-2)^{n}$
ii）$\sum_{n=1}^{\infty} 2^{n}(x-1)^{n}$
b）Using the method of power series，find the recurrence relation and two linearly independent solutions for the following ODE：

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+x y=0
$$

