系所組別：航空太空工程學系甲乙丙丁組，民航研究所甲組

考試科目：工程數學

考試日期：0211，節次：3

第1頁，共1頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．Prove that $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\mathrm{T}}\right)$ for every $\mathrm{m} \times \mathrm{n}$ matrix．
2．Derive the integration formula

$$
\int_{0}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x=\frac{\pi}{2}(b-a) \quad(a \geq 0, b \geq 0)
$$

Then，with the aid of the trigonometric identity $1-\cos (2 x)=2 \sin ^{2} x$ ，point out how it follows that

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
$$

3．Use the method of separation of variables to solve the problem：

$$
\begin{aligned}
& u_{t}=9 u_{x x} \quad 0<x<8, t>0 \\
& u(0, t)=u(8, t)=0, \quad t>0 \\
& u(x, 0)=x+2, \quad 0<x<2
\end{aligned}
$$

4．Solve the following initial value problem：

$$
y^{\prime \prime}+4 y^{\prime}+8 y=e^{2 t}-2 \delta(t-2 \pi), \quad y(0)=2, \quad y^{\prime}(0)=0
$$

5．Let $\vec{R}(s)$ be a space curve represented by the arc length parameter s ．（ 20% ）
（a）What is the unit tangent vector $\vec{T}(s)$ along the space curve？（5\％）
（b）Represent the unit normal vector $\bar{N}(s)$ along the space curve by use of $\bar{T}(s)$ and the curvature κ of the curve．（5\％）
（c）Let $f(x, y, z)=x^{2}+y^{2}-z$ be a temperature field．What is the rate of change of $f(x, y, z)$ at the point $P(1,1,2)$ on the space curve $\vec{R}(s)$ in the direction of the vector $\vec{v}=2 \vec{i}+2 \vec{j}+\vec{k}$ ． （5\％）
（d）In problem（c），what is the maximum value of the rate of change of $f(x, y, z)$ at the point $P(1,1,2)$ ？（5\％）

